单行道
去百度文库,查看完整内容>内容来自用户:高教金通(武汉)教育科技有限公司2019考研数学备考最科学的指南2018考研数学真题超级详解及点评2018数学真题唯一最全面、准确、详尽的解析(数学二)试题解析及点评版权为贺惠军老师所有,转载请给予说明。考查幂指函数的极限求解,幂指函数首先用对数形式转换。《金讲》中反复强调了这一万能解答步骤,属送分题。送分题绝对值函数求导,实质考查导数定义的基本掌握。利用导数定义,写出零界点0处的导数,左导不等于右导则不可导。《考研数学超级金讲》(以下简称《金讲》)第70页有专题详解绝对值函数的导数计算。本题难度远低于《金讲》本节例7,属送分题。送分题复合函数表达式的求解,这是中学的难点。考虑到不少同学中学数学基础知识并不牢固,《金讲》在第一章特设了一个重难点专题详解,足以化解任何复合函数表达式求解,对《金讲》读者是送分题。送分题可能是大部分同学卷面遇上的第一道难题。出现二阶或者二阶以上导数,必须考虑泰勒展开,这一结论在《金讲》第154页给出非常重要的提醒,在暑期集训中也反复强调这一结论,并给出了不少于3道以上试题的应用。半送分题送分题定积分性质及其对称性的应用。区间对称性,这一结论在《金讲》和暑期集训中反复强调的重点。相同的积分区间的定积分大小的比较一定只是对被积分大小的比较,这类题几乎每年必考。暑期集训至少讲过2道难度超出本题难度的例题,属送分题。考查简单积分区间变换及积分对称性定理。画出不同积分的