欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研中的数学一二三是什么意思?

殡葬师
鬼三惊
有一个很大的区别就是3262343833说学模式的问题,数学三的要求比较高,数学四的概念考察要比数三难一些,还有一点就是数三和数四复习上,微积分数三高一些。 区分四份试卷的侧重点 不同专业考生所须进行考试的数学试卷类型不同,因此区分不同试卷的侧重点,进行针对性复习很有必要。 清华大学数学系的刘坤林教授认为,考研数学4份试卷的最大不同表现在:数一、数二属于理工类,数三、数四属于经济类。 报考尖端工程或是在未来研究中需要较多运用数学的考生需要考数一,比如报考计算机、信息、力学、航天等专业的考生。报考专业属于工程类并在将来学习中对数学要求不是特别高的考生需要考数二,如城建等专业。报考专业属于经济类、工商类的考生则需要考数三、数四。 一些经济类专业的考生认为,数学考研试卷中数三、数四只考经济数学。"其实不然。数三、数四考的还是高等数学。"刘坤林教授举例说,经济类专业考生的使用的数学试卷中,一个题目里可能会涉及一些含有经济术语的题目,比如一个产品如何使成本最低,销售产品如何使利润最大。"但不要相信数三、数四是考经济数学,拿一套经济类丛书来看就行了。数学一、二、三、四都要按理工类专业要求复习,才会有好成绩。" 陈文灯教授说,理工类数学试卷对高等数学考查的要求最高,其重点是高数解题分析。经济类数学试卷,对线性代数、概率与数理统计要求高,考生应该把离散型二维随机变量及其分布作为复习重点。 一般来说工学专业考数学一,理学专业考数学二,但有些对数学要求不是很高的专业因为研究方向的不同各个学校并不相同,有的考数学一,而有的则考数学二,比如说我们GIS—地理信息系统。 经济管理类专业考数学三、数学四。参考资料:http://..com/question/23528951.html?si=2

请问考研数学一难吗?

嘉舞堂
執競
考研数学3431346432具体有数学一、数学二、数学三,下面我们先从数学一说起,数学一的考试科目是高等数学、线性代数、概率论与数理统计三门课程,其中高等数学的考试内容为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、向量代数和空间解析几何;5、多元函数微分学;6、多元函数积分学;7、无穷级数;8、常微分方程。线性代数的考试内容为:1、行列式;2、矩阵;3、向量;4、线性方程组;5、矩阵的特征值和特征向量;6、二次型。概率论与数理统计初步的考试内容为:1、古典概率;2、随机变量及其分布;3、多维随机变量及其分布;4、随机变量的数字特征;5、大数定律和中心极限定理;6、数理统计的基本概念;7、参数估计;8、假设检验。上面呢是数学一的考试内容,那数学二都考些什么呢,它只考高等数学和线性代数两门课程,其中高等数学的考试内容为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、多元函数微积分学;5、常微分方程。数学二相对数学一内容少了很多部分,主要体现在高数上,数学二不考察向量代数和空间解析几何、无穷级数,而且多元函数里没有三重积分、曲线曲面积分,所以考数学二高数部分内容相对数学一少了很多!

考研数学3具体包括哪些内容?希望回答得详细点。谢谢。

玻璃缘
待之成体
2008年数学三考试大纲数 学 三考试科目 微积分、线性代数、概率论与数理统计微 积 分一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数基本初等函数的性质及图形 初等函数函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.了解数列极限和函数极限(包括左、右极限)的概念. 6.理解无穷小的概念和基本性质,掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 7.了解极限的性质与极限存在的两个准则,掌握极限四则运[wiki]算法[/wiki]则,会应用两个重要极限. 8.理解函数连续性的概念(含左连续与右连续), 会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义函数的可导性与连续性之间的关系 平面曲线的切线与法线导数和微分的四则运算 基本初等函数的导数复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式不变性微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值 考试要求 1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线[wiki]方程[/wiki]和法线方程. 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解泰勒(Taylor)定理、了解柯西(Cauchy)中值定理,掌握这四个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法,了解函数极值的概念掌握函数极值、最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数,当 时, 的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点和渐近线. 9.会描绘简单函数的图形. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质基本积分公式 定积分的概念和基本性质定积分中值定理积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法和分部积分法 反常(广义)积分积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题. 4.了解反常积分的概念,会计算反常积分. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性的概念有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算无界区域上简单的广义二重积分 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法([wiki]直角[/wiki]坐标、极坐标),了解无界区域上较简单的广义二重积分并会计算. 五、无穷级数 考试内容 常数项级数收敛与发散的概念收敛级数的和的概念 级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性 正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区问(指开区间)和收敛域 幂级数的和函数 幂级数在收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和. 6"掌握 、 、 、 及的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展开成幂级数. 六、常微分方程与差分方程 考试内容 微分方程的概念变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解 一阶常系数线性差分方程微分方程与差分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程.4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会用微分方程和差分方程求解简单的经济应用问题.Back线 性 代 数一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1.理解行列式的概念,掌握行列式的性质.2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂方阵乘积的行列式矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵矩阵的初等变换 初等矩阵 矩阵的秩矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质. 3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性元关 向量组的极大线性元关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组.2. 掌握非齐次线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组的结构及通解的概念.5. 掌握用初等行变换求解线性方程组的方法. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩惯性定理 二次型的标准形和规范形正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会甩正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.Back概 率 论 与 数 理 统 计一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复事件 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算. 2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法、乘法公式、全概率公式及贝叶斯(Bayes)公式等. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布 考试内容 随机变量 随机变量的分布函数及其性质 离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1.理解随机变量的概念;理解分布函数的概念及性质;会计算与随机变量有关的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3. 理解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布、指数分布及其应用,其中参数为 的指数分布 的密度函数为5.会求随机变量函数的分布.三、多维随机变量的分布考试内容 多维随机变量及其分布函数 二维离散型随机变量概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度 边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度.掌握二维随机变量的边缘概率分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布;会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征 考试内容 随机变量的[wiki]数学[/wiki]期望(均值)、方差、标准差及其性质随机变量函数的数学期望 切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征. 2.会随机变量函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyhev)大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为: .2.了解产生 变量、 变量和 变量的典型模型;理解标准正态分布、 分布、分布和 分布的分位数,会查相应的数值表.3.掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布. 4.理解经验分布函数的概念和性质,会根据样本值求经验分布函数. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体均值的区间估计 单个正态总体方差和标准差的区间估计两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验正估计量的无偏性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数值特征的置信区间的求法. 4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.掌握单个及两个正态总体的均值和方差的假设检验.试 卷 结 构(-)总分 试卷满分为150分 (二)内容比例 微积分约56% 线性代数约22% 概率论与数理统计约22% (三)题型比例 填空题与选择题约37% 解答题(包括证明题)约63%注:考试时间为 180分钟参考资料:http://123.103.29.54/archiver/tid-2797.html

请问考研数学一与数学二有什么区别?

可不哀与
地狱门
1、数学一:①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元 函数的微积分学、无穷级数、常微分方程)②线性代数(行列式、矩阵、向量、线性方程组、 矩阵的特征值和特征向量、二次型)③概率论与数理统计(随机事件和概率、随机变量及其概 率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数 理统计的基本概念、参数估计、假设检验)。数学二:①高等数学(函数、极限、连续、一元函数微积分学、常微分方程)②线性代数(行列式、 矩阵、向量、线性方程组、矩阵的特征值和特征向量)。2、数学(一)适用的招生专业为:(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及 工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇 航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学 科、专业。(2)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。数学(二)适用的招生专业为:工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程 等一级学科中所有的二级学科、专业。

考研数学一和数学三内容上有哪些差别

匪风
第二部
种类内容比例 题型比例 数学一高等数学 约56%线性代数 约22%概率论与数理统计 约 22% 填空题与选择题约 45%解答题(包括证明题) 约55%数学二高等数学 约78%线性代数 约22% 填空题与选择题约 45%解答题(包括证明题) 约55%数学三微积分 约56%线性代数 约22%概率论与数理统计 约 22% 填空题与选择题约 45%解答题(包括证明题) 约55% 而对于数学三来说,考试大纲可能会有些变化,因为教育部从2009年起,将原来的数学三、数学四进行整合。整合后称为“数学三”。而原使用数学三或数学四的招生专业从2009年开始使用新的“数学三”,相比于原来的数学四,新的“数学三”增加了三方面的内容,具体有:增加了无穷级数的相关内容;增加了线性微分方程解的性质及解的结构定理、二阶微分方程及差分方程的相关内容;增加了数理统计的基本概念、点估计的概念、矩估计法及最大似然估计的相关内容;相比于原来的数学三新的“数学三”在一部分内容上有所减少,且在部分知识点上要求有所降低。具体有:降低了无穷级数中部分考试内容的要求; 降低了常微分方程与差分方程中二阶微分方程、差分方程的考试要求;降低了概率论中的切比雪夫不等式的考试要求;降低了数理统计的基本概念中部分考试内容的考试要求;降低了参数估计中点估计等概念的考试要求;删除了参数估计中估计量的评选标准和区间估计的考试内容;删除了假设检验的全部内容。从数学三09年与08年的真题对比可以看出:08年数学三解答题中考了无穷级数和数理统计部分各一大题,而09年数学三中只有概率的两个大题,统计部分并没有出大题,所以说今年的考试中可能会出现统计的大题,所以说2010年的考试大纲中可能会增加统计部分的考试要求,而对于级数部分同学们可以依然按照09年的大纲要求来进行复习,具体的变化可以等考试大纲出来后再进行调整和复习。所以考生在策略上要有的放矢,针对变化的内容,认真阅读考试大纲的考试内容和考试要求,对变化的章节部分各个击破,不予遗漏。同学们不要担心,扎扎实实的打好基础,无论要求怎么样?“了解”“理解”“掌握”还是“会求”都应该踏踏实实的打好基础,只有打好基础,不论是考查基本概念、基本理论还是基本方法,都会游刃有余的解决掉,因为无论从哪个角度出题,只要是考纲涉及到的,都有可能会考到,所以同学们在复习的过程中一定要认认真真的一步一个脚印的学习,而且还要多动脑思考,动手计算,不是只看题觉得会了,其实还是要动手做做你才会觉得那真的是不一样的收获。数学的学习就是日积月累的过程,要坚持不懈持之以恒一定会有很大的进步,最后也会取得自己满意的成绩的。

考研数学三有多难?

采茶女
履事
考研数学一和数学三的难度是不相上下的,为什么这么说呢?1、数一3363393761考察知识点多,而数三的题目难度要更高一些有些同学会感觉数学一难是因为数学一所考察的知识点会一些。在大纲中,数一要求掌握285个知识点,数三只要求掌握173个知识点,就这要求同学要熟练掌握的知识点。而数学三相对于数学一,所要求掌握的知识点虽然少但是考察的深度要更深一些,也就是说虽然知识点少但要做到熟练运用,懂得举一反三。2、数一和数三考察内容的侧重点不同数学一与数学三所考察的内容虽然都是高等数学、线性代数、概率论与数理统计这三部分,并且所占比例都是为56%、22%和22%,但是侧重点以及一些要求掌握的知识点是不同的,这也就造成数一和数三有一定的难度差。数一的考试重点在无穷级数、曲线、曲面积分上,是每年必考,而且经常以解答题的形式来考查;数三要求掌握经济应用问题,也基本上是每年必考,2015年以解答题的形式考查了边际成本和弹性的问题,2014年以填空题的形式考查了边际收益的问题,2013年以解答题的形式考查了边际利润的问题。除了重点知识的不同外,一些要求掌握的知识点也是不同的。在高等数学中,数学一考查空间解析几何、多元函数积分学(二重积分以外)、微积分的物理应用,数三是不考的;数三考察微积分的经济学应用,数一不考。在概率论与数理统计中,数学一的考试范围比数学三略大,主要增加了参数估计部分的考点,包括估计量的评选标准、区间估计以及后续的假设检验。综上所述数学一和数学三的难度差是相对的,有些同学会认为数学一难,是因为数学一要求掌握的知识点多;而有些同学认为数学三难,是因为数学三的题目考察更偏,更有深度。所以说数学一和数学三的难度是不相上下的。

考研数学一和数学三内容上有哪些差别

鼬佐
美洲狮
种类内容比例 题型比例 数学一高等数学 约56% 线性代数 约22% 概率论与数理统计 约 22% 填空题与选择题3332633639约 45%解答题(包括证明题) 约55%数学二高等数学 约78% 线性代数 约22% 填空题与选择题约 45%解答题(包括证明题) 约55%数学三微积分 约56% 线性代数 约22% 概率论与数理统计 约 22% 填空题与选择题约 45%解答题(包括证明题) 约55% 而对于数学三来说,考试大纲可能会有些变化,因为教育部从2009年起,将原来的数学三、数学四进行整合。整合后称为“数学三”。而原使用数学三或数学四的招生专业从2009年开始使用新的“数学三”,相比于原来的数学四,新的“数学三”增加了三方面的内容,具体有:增加了无穷级数的相关内容;增加了线性微分方程解的性质及解的结构定理、二阶微分方程及差分方程的相关内容;增加了数理统计的基本概念、点估计的概念、矩估计法及最大似然估计的相关内容;相比于原来的数学三新的“数学三”在一部分内容上有所减少,且在部分知识点上要求有所降低。具体有:降低了无穷级数中部分考试内容的要求; 降低了常微分方程与差分方程中二阶微分方程、差分方程的考试要求;降低了概率论中的切比雪夫不等式的考试要求;降低了数理统计的基本概念中部分考试内容的考试要求;降低了参数估计中点估计等概念的考试要求;删除了参数估计中估计量的评选标准和区间估计的考试内容;删除了假设检验的全部内容。 从数学三09年与08年的真题对比可以看出:08年数学三解答题中考了无穷级数和数理统计部分各一大题,而09年数学三中只有概率的两个大题,统计部分并没有出大题,所以说今年的考试中可能会出现统计的大题,所以说2010年的考试大纲中可能会增加统计部分的考试要求,而对于级数部分同学们可以依然按照09年的大纲要求来进行复习,具体的变化可以等考试大纲出来后再进行调整和复习。所以考生在策略上要有的放矢,针对变化的内容,认真阅读考试大纲的考试内容和考试要求,对变化的章节部分各个击破,不予遗漏。同学们不要担心,扎扎实实的打好基础,无论要求怎么样?“了解”“理解”“掌握”还是“会求”都应该踏踏实实的打好基础,只有打好基础,不论是考查基本概念、基本理论还是基本方法,都会游刃有余的解决掉,因为无论从哪个角度出题,只要是考纲涉及到的,都有可能会考到,所以同学们在复习的过程中一定要认认真真的一步一个脚印的学习,而且还要多动脑思考,动手计算,不是只看题觉得会了,其实还是要动手做做你才会觉得那真的是不一样的收获。数学的学习就是日积月累的过程,要坚持不懈持之以恒一定会有很大的进步,最后也会取得自己满意的成绩的。

考研数学二和数学三哪个难一些

三鼎
槐树庄
你好!数三更难望采纳,谢谢

考研数学一和数学三有什么区别吗?

是谓能移
口中有珠
考研数学 数学一 考试科目 微积分、线性代数、概率论与数理统计初步 数学版二 考试科目 微积权分、线性代数初步 数学三 考试科目 微积分、线性代数、概率论与数理统计 数学四 考试科目 微积分、线性代数、概率论 报考理工类(非数学)专业考数学一或二,报考经济管理类专业考数学三或四。 数学一对微积分要求较高,数学三对概率统计要求较高。总体来说数一要比数三难很多