欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一的线性代数的全部考试范围。

黄头发
红信封
线性代数一、行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理考试要求:1、了解行列式的概念,掌握行列式的性质。2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。二、矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵矩阵的秩,矩阵的等价,分块矩阵及其运算。考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。2、理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。3、理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。4、了解分块矩阵及其运算。三、向量考试内容向量的概念,向量的线性组合与线性表示,向量组的线性相关与线性无关,向量组的极大线性无关组等价向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量空间及其相关概念,维向量空间的基变换和坐标变换,过渡矩阵,向量的内积,线性无关向量组的正交规范化方法,规范正交基,正交矩阵及其性质。考试要求1、理解 维向量、向量的线性组合与线性表示的概念。2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系。5、了解 维向量空间、子空间、基底、维数、坐标等概念。6、了解基变换和坐标变换公式,会求过渡矩阵。7、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。8、了解规范正交基、正交矩阵的概念以及它们的性质。四、线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件解空间,非齐次线性方程组的通解。考试要求1、会用克莱姆法则。2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。3、理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。4、理解非齐次线性方程组解的结构及通解的概念。5、掌握用初等行变换求解线性方程组的方法。五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质,相似变换、相似矩阵的概念及性质。考试要求1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。3、掌握实对称矩阵的特征值和特征向量的性质。六、二次型考试内容:二次型及其矩阵表示,合同变换与合同矩阵二次型的秩,惯性定理,二次型的标准形和规范形,用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性。考试要求1、掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理。2、掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形。3、理解正定二次型、正定矩阵的概念,并掌握其判别法。扩展资料命题原则科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。覆盖全面的原则考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。控制难易度的原则考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。控制题量的原则考研数学试题的题量控制在20-22道之间(一般6道填空题,6道选择题,10道大题),保证考生基本能答完试题并有时间检查。数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。参考资料来源:百度百科-考研数学

考研数学一的线性代数用哪本教材好?

名誉之观
趣取无用
基础一阶段肯定是用《线性代数》同济第六版教材基础二阶段可以用李永乐的线性代数辅导讲义 西安交通大学出版社强化阶段用的是李永乐的复习全书

考研数学线性代数

风不止
法象
线性代数第一章:行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求: 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.第二章:矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算考试要求: 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.第三章:向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求: 1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系 5.了解n维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质.第四章:线性方程组考试内容: 线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法.第五章:矩阵的特征值及特征向量考试内容: 矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求: 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质.第六章:二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求: 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法如果矩阵A存在特征值或者特征向量,一定有Ax=ax(其中x是特征向量,a为特征值),在你得到的方程两边同时乘上x,再讲上述等式带入,可得到(a^3-2*a^2-5*a+6)x=0,应为特征向量不是零向量,故括号的内容等于0,解得的一定是特征向量;正定矩阵的特征值一定大于0,所以取交集

考研数学中,高数,线性代数,概率统计各占多少分?

埃殆为病
通几
97-06年数学考试考点及分值分布(数三)点击浏览该文件点击浏览该文件点击浏览该文件这是我根据《黑博士系列》整理归纳的,近十年考研数学(三)考点及其分值分布,从中,可以看出命题人出题的重点和热点所在,希望对研友们的复习有一定帮助!参考资料:http://www.cnky.net/bbs/dispbbs.asp?boardid=228&id=216157

问下考研数一,线性代数是用第几版的啊?谢谢了

千秋
汝唯莫必
指定教材太简单了,很多概念说不清楚,建议看丘维声《高等代数》科学出版社,或者张贤科《线性代数》,这俩教材课后题做了就没问题,不用再买张宇李永乐什么的。

考研数学的线性代数是不是很简单?

内成
方术
难者不会 会者不难线性代数要注意概念结论的关联, 内容虽少, 知识点却不少.有个题目给我的印象很深, 是个填空题:设 A=1 23 45 6则 | AA^T | = __________.这个行列式一般都会求, 但若方法不对路, 就会用掉很多时间.正确的思路是: 因为 r(AA^T) <= r(A) <= 2. 所以3阶矩阵 AA^T 非满秩, 故其行列式=0.试想: 如果矩阵A中的数比较大, 硬算出 AA^T 要花多少时间, 算行列式又要花多少时间!祝考研顺利.可消息我你的邮箱, 我发给你个参考资料 .

考研数学,线性代数的问题

凤凰情
末在于下
初等列变换很少用, 只有几个特殊情况:1. 线性方程组理论证明时:交换系数矩阵部分的列便于证明2. 求矩阵的等价标准形: 行列变换可同时用3. 解矩阵方程 XA=B: 对[A;B](上下放置)只用列变换4. 用初等变换求合同对角形:对[A;E]'用相同的行列变换初等行变换的用途:1. 求矩阵的秩,化行阶梯矩阵, 非零行数即矩阵的秩 同时用列变换也没问题, 但行变换就足够用了!2. 化为行阶梯形 求向量组的秩和极大无关组 (A,b)化为行阶梯形, 判断方程组的解的存在性3. 化行最简形 把一个向量表示为一个向量组的线性组合 方程组有解时, 求出方程组的全部解 求出向量组的极大无关组, 且将其余向量由极大无关组线性表示4. 求方阵的逆 (A,E)-->(E,A^-1) 解矩阵方程 AX=B, (A,B)-->(E,A^-1B)这个方程的形式有关系的:如果形式为AX = B ,则用初等行变换,这个书里面的例题全是这种格式的…… 如果形式为XA = B ,就用初等列变换……你可以好好看看课本,里面都有说明的,不过同济四版和五版的基本没有第二种情况,都是第一种情况,考研这几年也是第一种情况……至于两者都可以用的情况只有求标准型时可以使用的,最终化成是对角阵的形式……解方程不能两种方法都用嗯。是要多看书啊。多谢了。还有变换的技巧?能不能指点一下追答变换的技巧?估计没有的……这门学科,技巧就是:熟能生巧,呵呵,大量做题,就行了……真的没有技巧,有时候,即使是有技巧,你的题量做的不是很大,计算上很吃力,写字都困难,技巧用不上的,你说是不?都在高中过来过了……另外还要提醒你下:注意书写清楚和规整,因为变换时一行一行的,你要讲一行划去,写出变换后的另外一行,要是书写的不好,肯定看着吃力的……

考研数学一,数学二线性代数部分题目相同吗

羔裘
狼群之
数二可以的,难度与数一相当,并且各科间考题都有借鉴,今年数二可能考往年数一的题,好多年都是这样的,只是不考的不用做,概率论不考,线性代数全考,高数中,级数不考,空间解析几何不考,三重积分、曲线积分、曲面积分都不考,关键细看高数,认真看!!!!希望能帮到你,祝你考研成功,加油!!!

考研数学一考什么

汲黯
鬼宝宝
数一:高等数学、线性代数、概率论与数理统计。数二:高等数学、线性代数。数三:微积分、线性代数、概率论与数理统计。