欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2005年考研数学一真题解析

银魂
炼丹
去百度文库,查看完整内容>内容来自用户:suijiazhuang12005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线的斜渐近线方程为【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】因为a=,,于是所求斜渐近线方程为(2)微分方程满足的解为.【分析】直接套用一阶线性微分方程的通解公式:,再由初始条件确定任意常数即可.【详解】原方程等价为,于是通解为=,由得C=0,故所求解为(3)设函数,单位向量,则=.【分析】函数u(x,y,z)沿单位向量}的方向导数为:因此,本题直接用上述公式即可.【详解】因为,,,于是所求方向导数为=(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则.【分析】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】=(5)设均为3维列向量,记矩阵,,如果,那么2.【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有=,于是有(6)从数1,2,3,4中任取一个数,记为X,再从中任取一个数,记为Y,则=.【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分(C)(B)记  (2)

2001年考研数学一试题答案与解析

爆炸令
女巡按
去百度文库,查看完整内容>内容来自用户:zglajtb2001年考研数学一试题答案与解析一、(1)【分析】由通解的形式可知特征方程的两个根是,从而得知特征方程为.由此,所求微分方程为.(2)【分析】gradr=.再求divgradr==.于是divgradr|=.(3)【分析】这个二次积分不是二重积分的累次积分,因为时.由此看出二次积分是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为.由累次积分的内外层积分限可确定积分区域:.见图.现可交换积分次序原式=.(4)【分析】矩阵的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为,故,即.按定义知.(5)【分析】根据切比雪夫不等式,于是.二、(1)【分析】当时,单调增,(A),(C)不对;当时,:增——减——增:正——负——正,(B)不对,(D)对.应选(D).(2)关于(A),涉及可微与可偏导的关系.由在(0,0)存在两个偏导数在(0,0)处可微.因此(A)不一定成立.关于(B)只能假设在(0,0)存在偏导数,不保证曲面在存在切平面.若存在时,法向量n={3,1,-1}与{3,1,1}不共线,因而(B)不成立.关于(C),该曲线的参数方程为它在点处的切向量为.因此,(C)成立.(3)【分析】当时,.关于(A):,由此可知.若在可导(A)成立,反之若(A)成立.如满足(A),但不.关于(D):若在可导,.(D)成立.反之(D)成立在连续,在可导.如满足(D),但在处不连续(

2009年考研数学一试题及答案解析

泠然善也
道德不废
去百度文库,查看完整内容>内容来自用户:2954136102009年全国硕士研究生入学统一考试数学一试题答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当时,与等价无穷小,则....【答案】【解析】为等价无穷小,则故排除。另外存在,蕴含了故排除。所以本题选A。(2)如图,正方形被其对角线划分为四个区域,,则....【答案】A【解析】本题利用二重积分区域的对称性及被积函数的奇偶性。两区域关于轴对称,而,即被积函数是关于的奇函数,所以;两区域关于轴对称,而,即被积函数是关于的偶函数,所以;.所以正确答案为A.(3)设函数在区间上的图形为:则函数的图形为【答案】【解析】此题为定积分的应用知识考核,由的图形可见,其图像与轴及轴、所围的图形的代数面积为所求函数,从而可得出几个方面的特征:①时,,且单调递减。②时,单调递增。③时,为常函数。④时,为线性函数,单调递增。⑤由于F(x)为连续函数结合这些特点,可见正确选项为。(4)设有两个数列,若,则当收敛时,收敛.当发散时,发散.当收敛时,收敛.当发散时,发散.【答案】C【解析】【答案】(Ⅰ)求(

2001考研数学一试题及答案解析

年八十矣
距陆而止
去百度文库,查看完整内容>内容来自用户:天行健P郓蔚2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设(为任意常数)为某二阶常系数线性齐次微分方程の通解,则该方程为_____________.(2)设,则div(gradr)=_____________.(3)交换二次积分の积分次序:=_____________.(4)设矩阵满足,其中为单位矩阵,则=_____________.(5)设随机变量の方差是,则根据切比雪夫不等式有估计_____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数在定义域内可导,の图形如右图所示,则の图形为(2)设在点附近有定义,且,则(A).(B)曲面在处の法向量为{3,1,1}.(C)曲线在处の切向量为{1,0,3}.(D)曲线在处の切向量为{3,0,1}.(3)设,则在=0处可导の充要条件为(A)存在.(B)存在.(C)存在.(D)存在.(4)设则与(A)合同且相似.(B)合同但不相似.(C)不合同但相似.(D)不合同且不相似.(5)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上の次数,则X和Yの相关系数等于(A)-1.(B)0.(C).(D)1.三、(本题满分6分)求.四、(本题满分6分)设函数在点处可微,且,,,.求.五、(本题满分8分)设=将展开成の幂级数,并求级数の和.六、(本题满分7分)计算,其中是平面与柱面の交线,从轴正向看去,为逆时针方向.七、设

考研数一,数二,数三试卷有哪些不同

赋格曲
可谓
一、科目考试区别:线性代数数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,唯一不同的是数一的大纲中多了向量空间部分的知识,不过通过研究近五年的考试真题,我们发现对数一独有知识点的考察只在09、10年的试卷中出现过,其余年份考查的均是大纲中共同要求的知识点,而且从近两年的真题来看,数一、数二、数三中线性代数部分的试题是一样的,没再出现变化的题目,那么也就是说从以往的经验来看,2015年的考研数学中数一、数二、数三线性代数部分的题目也不会有太大的差别!2.概率论与数理统计数学二不考察,数学一与数学三均占22%,从历年的考试大纲来看,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件,广大的考研学子们都知道大纲中的“了解”与“掌握”是两个不同的概念,因此,建议广大考生在复习概率这门学科的时候一定要对照历年的考试大纲,不要做无用功!3.高等数学数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。由于考察的内容比较多,故我们只从大的方向上对数一、二、三做简单的区别。以同济六版教材为例,数一考察的范围是最广的,基本涵盖整个教材(除课本上标有*号的内容);数二不考察向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数;数三不考察向量空间与解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。二、试卷考试内容区别1.数学一高等数学:同济六版高等数学中除了第七章微分方程考带*号的欧拉方程,伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;第九章第五节不考方程组的情形;第十二章第五节不考欧拉公式;线性代数:数学一用的教材是同济五版线性代数1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。其中向量组的线性相关性中数一考向量空间,线性方程组跟空间解析几何结合数一也要考;概率与数理统计:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计8、假设检验2.数学二高等数学:同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。3.数学三高等数学:同济六版高等数学中所有带*号的都不考;所有“近似”的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。不考第八章空间解析几何与向量代数。第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数;线性代数:数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题;概率与数理统计的内容包括:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计,其中数三的同学不考参数估计中的区间估计。

2018考研数学二真题最强解析及点评(没有之一),给你2019考研数学最科学的指引

不敢用也
备用品
去百度文库,查看完整内容>内容来自用户:高教金通(武汉)教育科技有限公司2019考研数学备考最科学的指南2018考研数学真题超级详解及点评2018数学真题唯一最全面、准确、详尽的解析(数学二)试题解析及点评版权为贺惠军老师所有,转载请给予说明。考查幂指函数的极限求解,幂指函数首先用对数形式转换。《金讲》中反复强调了这一万能解答步骤,属送分题。送分题绝对值函数求导,实质考查导数定义的基本掌握。利用导数定义,写出零界点0处的导数,左导不等于右导则不可导。《考研数学超级金讲》(以下简称《金讲》)第70页有专题详解绝对值函数的导数计算。本题难度远低于《金讲》本节例7,属送分题。送分题复合函数表达式的求解,这是中学的难点。考虑到不少同学中学数学基础知识并不牢固,《金讲》在第一章特设了一个重难点专题详解,足以化解任何复合函数表达式求解,对《金讲》读者是送分题。送分题可能是大部分同学卷面遇上的第一道难题。出现二阶或者二阶以上导数,必须考虑泰勒展开,这一结论在《金讲》第154页给出非常重要的提醒,在暑期集训中也反复强调这一结论,并给出了不少于3道以上试题的应用。半送分题送分题定积分性质及其对称性的应用。区间对称性,这一结论在《金讲》和暑期集训中反复强调的重点。相同的积分区间的定积分大小的比较一定只是对被积分大小的比较,这类题几乎每年必考。暑期集训至少讲过2道难度超出本题难度的例题,属送分题。考查简单积分区间变换及积分对称性定理。画出不同积分的

2016年考研数学一填空题第一题详解

绿茶妹
抱火哥
直接洛必达啊更多追答追答上面的定积分怎么消掉的追答求导!你是今年考研还是明年!感觉你啥也不知道啊

2019年考研数学一真题附答案解析

得车数乘
捉鼠记
去百度文库,查看完整内容>内容来自用户:GG135795959862019年考研数学一真题解析一、选择题1—8小题.每小题4分,共32分.1.当时,若与是同阶无穷小,则()(A)(B)(C)(D)【答案】(C)【详解】当时,,所以,所以.2.设函数,则是的()(A)可导点,极值点(B)不可导的点,极值点(C)可导点,非极值点(D)不可导点,非极值点【答案】(B)【详解】(1),所以函数在处连续;(2),所以函数在处不可导;(3)当时,,函数单调递增;当时,,函数单调减少,所以函数在取得极大值.3.设是单调增加的有界数列,则下列级数中收敛的是()(A)(B)(C)(D)【答案】(D)【详解】设是单调增加的有界数列,由单调有界定理知存在,记为;又设,满足,则,且,则对于正项对于级数,前项和:也就是收敛.4.设函数,如果对于上半平面内任意有向光滑封闭曲线都有那么函数可取为()(A)(B)(C)(D)【答案】(D)【详解】显然,由积分与路径无关条件知,也就是,其中是在上处处可导的函数.只有(D)满足.5.设是三阶实对称矩阵,是三阶单位矩阵,若,且,则二次型的规范形是()(A)(B)(C)(D)【答案】(C)【详解】假设是矩阵的特征值,由条件可得,也就是矩阵(设函数分别求解线性方程组

考研数学题,最好详解?

绿荫岛
理义
端点不是极值点,端点可以是最大最小值。