欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2019年考研数学一真题附答案解析

仙水
盗道道
去百度文库,查看完整内容>内容来自用户:GG135795959862019年考研数学一真题解析一、选择题1—8小题.每小题4分,共32分.1.当时,若与是同阶无穷小,则()(A)(B)(C)(D)【答案】(C)【详解】当时,,所以,所以.2.设函数,则是的()(A)可导点,极值点(B)不可导的点,极值点(C)可导点,非极值点(D)不可导点,非极值点【答案】(B)【详解】(1),所以函数在处连续;(2),所以函数在处不可导;(3)当时,,函数单调递增;当时,,函数单调减少,所以函数在取得极大值.3.设是单调增加的有界数列,则下列级数中收敛的是()(A)(B)(C)(D)【答案】(D)【详解】设是单调增加的有界数列,由单调有界定理知存在,记为;又设,满足,则,且,则对于正项对于级数,前项和:也就是收敛.4.设函数,如果对于上半平面内任意有向光滑封闭曲线都有那么函数可取为()(A)(B)(C)(D)【答案】(D)【详解】显然,由积分与路径无关条件知,也就是,其中是在上处处可导的函数.只有(D)满足.5.设是三阶实对称矩阵,是三阶单位矩阵,若,且,则二次型的规范形是()(A)(B)(C)(D)【答案】(C)【详解】假设是矩阵的特征值,由条件可得,也就是矩阵(设函数分别求解线性方程组

2019考研数学试题及真题答案是真的吗?

番茄酱
俗谛
2019考研数学真题都是在考试之后才能公布,因此之前看到的多数都是押题或者往年的题。具体还需要这两天22号,23号考试结束之后才会公布出来哦。可以第一时间获取考研真题解析直播视频的,请查看我们官网的消息哦。不要错过。

2019考研初试数学一真题在哪里找?

王昭君
笛吹川
院校官网,网上可以买,或者咨询一下自己的学姐学长,也可以找一些考研机构获取,一般真题很多是没有答案的。

2010 数学一 真题 考研 19题 求帮助 跪求 有图 有过程 我把20分全给你

恐龙王
剑少爷
把条件x^2 + 3/4*y^2 = 1和y = 2z代进去 4x^2 + 5z^2 + 5y^2 - 8yz先消x4x^2 = 4 - 3y^2原式4 + 2y^2 + 5z^2 - 8yz根据 y = 2z 就可以变形为4 + y^2 + 2^z - 4yz我的问题是 为什么 这个曲面可以带入到 其中啊 带入我知道 关键是 为什么可以带入 曲线积分和曲面积分可以带入到被积函数中去 关键是 ds不是被积函数啊 等式的右边已经不是曲面积分了 而是二重积分了不好意思, 我开始看错条件了, 不是(y=2z,和x^2 + 3/4*y^2 = 1),这个是曲线轨迹。把原式曲面x^2 + y^2 + z^2 -yz = 1变成 x^2 = 1 - y^2 - z^2 +yz 代进去替换x你是说曲面积分dS化成dxdy的二重积分吗? 这个书上第十章第三节(二重积分的应用)中有公式推到。dS = √(1 + Zx^2 + Zy^2) dxdyZ = f(x,y)是曲面方程 Zx, Zy分别是x,y的偏导. 那么dS的法线是 , 和x,y平面夹角余弦cosr = 1 / √(1 + Zx^2 + Zy^2)dS * cosr = dxdydS = dxdy/cosr = √(1 + Zx^2 + Zy^2) dxdy

大学数学 19考研一道数学题三重积分

美丽城
灵明
二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积。。三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量。。第一类曲线积分,可以看做一个密度函数f,对曲线长度s的积分,所以他表示的是曲线s的质量。第二类曲线积分,可以看做一个变力f,对曲线切向的积分,所以他表示的是变力f沿曲线做的功。第一类曲面积分,可以看做一个密度函数f,对曲面面积S的积分,所以他表示的是曲面S的质量。第二类曲面积分,可以看做一个磁场强度f,对曲面法向的积分,所以他表示的是的磁通量。物理上形象的说,就是通过某个曲面的磁感线条数。。。

19考研数学会不会很

如愚
蠢男孩
你好:如果你准备2019年考研那么现在就要全面复习准备了时间剩余的不是很多了抓紧时间,祝你成功。

19考研数学用什么习题书

第一幕
玄一
先看复习全书 然后做汤家凤1800题 然后做 660 然后真题 足矣这里有电子书

2019汤家凤考研数学1

荒唐之言
开之以利
更到21了提取码:bh1e

19考研,张宇数学宇哥数学,怎么全下架了

若彼知之
一喷一醒
张宇的数学其实是挺难的,他在你的基础,然后在你的基础之上又有很多拓展的地方,比较适合数学基础比较好的人