欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学的题型?

阿加特
客出
2014考研数学高数八大题型你了解了吗暑假阶段,这时大家基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,因为还有半年的时间。复习是一步一步,循序渐进的,不要指望一口气把什么都掌握,学习必然是一个不断加强的过程,需要反复的训练,特别是考研数学,考点如此之多,想要短期内掌握的很好,显然是不可能的,它是需要一遍一遍的不断强化复习的。在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。  一.函数、极限与连续  求分段函数的复合函数;求极限或已知极限考研英语真题确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。  这一部分的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。  二.一元函数微分学  求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在海文钻石卡价格开区间内至少存在一点满足....”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。  这一部分会比较频繁的出现在大题中,复习的关键是掌握一般的方法步骤,这就需要多做题目来巩固掌握,要做到对一般难度和常见题型有100%的把握。  三.一元函数积分学  计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。  这一部分主要以计算应用题出现,只需多加练习即可。  四.向量代数和空间解析几何  计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角医学考研论坛;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。  这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。  五.多元函数的微分学  判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。  这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。  六.多元函数的积分学  二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。  这部分内容和题型,数一考生要足够的重视。  七.无穷级数  判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展考研数学大纲开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。  这部分相对来说可能有难度,但是掌握好还是有办法的。首先,各个概念要清楚;其次,对一般的题型要有把握解答;最后,找一些比较灵活的题型练练自己的思路。  八.微分方程  求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。  这一部分也是考研数学中的难点,对上面提到的常用方计算机考研法要熟练掌握,多做这方面的综合题来强化。  总之,数学要想考高分,2014年的考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要。高等教学  56%  线性代数  22%  概率论与数理统计 22%考试时间3个小时,满分150建议去买个考研数学教辅,再买套真题做做,题型每年应该差不多,我也刚刚开始准备15年的考研加油!!

考研数学什么题型最难?

不践其土
其长如辕
考研数学现在分为,数一、数二、数三,难度不一样,但题型都差不多。。。1、选择题;2、填空题;3、计算题。→更多详情请点击

考研一般要考哪些科目?

高巍
釜山行
准备参加研究生考试的同学需要准备哪些考试科目?考研初试复试都考什么?

想找一本介绍2017考研数学题型的书,最好能有一些技巧讲解和练习题的。

那点事
舜有膻行
我看很多同学会看毛纲源2017《考研数学常考题型解题方法技巧归纳》、,总结了许多使用快捷的简便算法,一体多节,非常不错的毛纲源2017《考研数学客观题简化求解》考研数学的复习需要足够的耐心和毅力,当自己遇到难题或者学 习感觉累的时候要做适当的休息或者跟其他同学出去走走适当的运动一下来调节自己,多和研友互相交流复习经验技巧,扬长补短。

考研数学复习如何过国家线?

空印盒
穷桎不行
考研数学复习全年规划:第一阶段 夯实基础,全面复习。主要目标:基本教材阶段。吃透考研大纲的要求,做到准确定位,事无巨细地对大纲涉及到的知识点进行地毯式的复习,夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。第二阶段 熟悉题型,前后贯通。主要目标:复习全书阶段。大量习题训练,熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。第三阶段 查缺补漏,模拟训练。主要目标:套题、模拟训练题阶段。练习答题规范,保持卷面整洁,增加信心,练习掌握考试时间的分配,增强临场应变的能力,要对自己前两个阶段复习中出现含糊不清,掌握不牢的地方重点加强。第四阶段 强化记忆,保持状态。主要目标:查漏补缺,回归教材。强化记忆,调整心态,保持状态,积极应考。考研国家线是教育部依据硕士生培养目标,结合年度招生计划、生源情况及总体初试成绩情况,确定报考统考、MBA及法律硕士专业学位考生进入复试的基本要求标准,其中包括应试科目总分要求和单科分数要求。应届本科毕业生和非应届毕业生实行统一的进入复试基本分数要求。

考研数学复习的分配时间

爱之涡
初恋爱
楼主:课本一定要看啊!!!万便不离其宗~~~给你提供几个计划吧 是我去年考研期间收集的 呵呵 复习总天数:31(7月1日至31日)+30(8月)+31(9月)+30(10月)+31(11月)+30(12月1日至30日) =183天 复习任务:高等数学(上下册)60%,概率论30%,线性代数10% 英语单词及词组6178个和阅读24部英文名著80%,语法10%,练习10% 政治:10月份以后再说 专业课:10月份以后再说 复习计划: 7,8,9月 一,总揽:7月高等数学,8月1日至20日概率论,8月20日至30日线性代数,9月〈〈2000年考研数学复习指南〉〉 7,8,9月24篇名著及名著内单词,另外随时复习回顾大纲单词。 二,细则:1,数学三。 高等数学 7月 函数,极限,连续 4天 一元函数微分学 6天 一元函数积分学 6天 常微分方程 3天 多元函数微分学 2天 多元函数积分学 6天 无穷级数 4天 31天 截止日期8月5日 ———————————————— 概率论与数理统计初步 随机事件和概率 4天 随机变量及其概率分布 4天 二维随机变量及其概率分布 4天 随机变量的数学特征 3天 大数定理与中心极值定理 1天 数理统计初步 4天 20天 截止日期8月30日 ———————————————— 线性代数 8月20日至30日 行列式 1天 矩阵及其运算 2天 向量与线性方程组 3天 矩阵的特征值与特征向量 2天 二次型 2天 10天 截止日期9月15日 ———————————————— 两千年考研数学复习指南 9月 注:考虑到休息时间的使用,上述计划的完成的最后截止日期是10月15日 2,英语 阅读 每月8部 4天1部 到9月底共阅读24部 ———————————————— 单词及词组 每天210个单词或词组,并时时反复复习 到九月底共记6178个单词及词组,并能熟练运用。 作息安排:上午:8:30至11:30 数学三 中午:11:30至2:00 休息 下午:2:00至5:00 英语 其它时间 自由支配 星期天休息 要注意的几点: 一、坚持坚持再坚持,要想今天我一定要做完什么,做不完不睡觉。 二、专心,学习就是学习,不要一会干这一会干那,特别是看flash的时候。 三、集中,不要相信什么细水长流,就像背单词,你一天背50个,第二天再背50个,几天下来后边没记住,前边又忘了,你一天背200个,连背五天肯定记住很多。其他复习也一样,不要一天复习一章,而是一天复习一本。 四、不要用太厚的书,天天背着很累,干学习就是不见书变薄是很打击信心的事,非要用厚书可以拆成几本,一天一本有成就感 五、不要怕累,没有任何人是轻轻松松考上研的,不付出努力就是不行 六、别说郁闷,郁闷是偷懒不想干活的代词 七、别相信考研辅导班的什么宣传,说什么押题、猜题都是假的,你怎么说,我就是不去 八、不要跟别人比,人比人气死人,自己按部就班复习,不要被别人影响 九、上网、玩游戏能不玩就不玩,考上再说 [转载] 考研数学规划 课本+复习指导书+习题集+模拟题+真题= KO 数学是与专业课并列的最重要的科目,用时最长。一般总分高的学生数学分数都高,即数 学是提分的一门科目。只凭数学一门课,拉十到二十分是比较容易的,而十到二十分对于 考研是相当大的差距。学习数学的要点是: a. 注重基本概念、定理(就像练武时的扎马 步,一定要有非常扎实的基本功); b. 多动手做题(不能只看不动笔, 1 + 1 = 2 这 样简单的东西也要写出来)。 1. 我的考研之路 我数学复习是从大三下学期开始的,大致分六轮: 1) 3 月初开学—— 6 月 15 日 :看一章课本,做课后题和陈文登《复习指南》对应章 节(平均四天一章)。这一遍最仔细,也耗时最多。弄完之后基本掌握了各种题型的解法 和考研大纲的要求。这一轮完成后基本上数学考高分就有了信心,因为很多人连《复习指 南》的书还没看过呢。 2) 6 月 15 日 —— 8 月 11 日 :这段时间我把《复习指南》又做了一遍,同时把从上 一届学姐那里买的《数学大纲解析》做了一遍。这一轮完成后,虽然不能全部融会贯通, 但基本建立了数学的框架体系,考研数学的信心更足了。因为很多人《复习指南》第一遍 还没完呢。 3) 8 月 11 日 —— 10 月 1 日 :数学弄了两遍,基本题型已经能够解决了(《复习指 南》太熟了,看着就要吐)。这时感觉做的题不多,急切希望作些题练练手,提高自己的 计算能力。于是从图书馆借了本陈文登的《题型集粹》,做了一遍(平均 1 、 2 天一章 )。因为这段时间准备并参加了一个比赛,有些分神,所以进度较慢。 4) 10 月 1 日 —— 11 月 11 日 :把《复习指南》又做了一遍,主要目的是在很短时 间内,完全建立数学框架体系,达到融会贯通。因为有了前三轮的基础,所以这一轮完成 的比较顺利。但由于去外地参加那个比赛的答辩以及准备期末考试,进度依然不快。 5) 11 月 11 日 ——考前一周:基本没什么事了,全心全意备考。这段时间主要是做模 拟题和真题。把买来的李永乐《 400 题》连续做了两遍,又把十年真题做了一遍(留着去 年真题到考前一周做)。这时已经信心十足了。 6) 考前一周——考试:才发现时间有些紧了。迅速把《复习指南》扫了一遍,卡着时间 做了一下去年真题(不管好坏,千万别忘心里去),剩下一、两天把以前总结在本子上的 公式、解题方法看了一遍,感觉效果不错。 2. 参考捷径 本人是数学专业学生(今年考数一),对数学要求较高。比如我第一轮的复习 其实速度是比较快的,一般人难以做到(当然,数二、数三、数四内容少,努力学完全有 可能),有些也不必做到。下面是我和其他一些研友共同探讨出来的一条路,按照这条路 走完,正常的话,数学应该能拿 140 分左右。大家可以参考一下: 1) 3 月初开学——暑假前:课本、课后题、复习指导书(李永乐、陈文登、其他人的也 行。如果用陈的指南,现代部分做李的《现代辅导讲义》)做一遍。可以先把课本做完再 做复习指导书,也可以像我一样一章一章做过去,关键是做完就行(数一可以迟一些,但 不能超过放假后两周)。当然,此时会出现一种情况,就是刚刚做完一章,回头再看已经 忘了。不用担心,这是刚开始做题少的缘故,随着数学复习的深入,自然会有质的提高( 想看到整个森林,你要先一棵一棵的把树栽上)。目的:掌握各知识点和大纲基本要求。 2) 暑假放假—— 9 月 1 日开学:复习指导书再做一遍。目的:初步建立框架体系,更 深入的掌握各知识点。 3) 9 月 1 日 —— 11 月初:找本习题集做一遍。有时间再把复习指导书做一遍,时间 短的话看一遍课本也行。目的:提高计算能力,融会贯通。 4) 11 月初——考前一周:模拟题、真题(留一套)至少各做一遍。有时间把课本再扫一 遍。目的:和考研挂钩,探寻历年出题规律,提高考研分数。 5) 考前一周——考试:看总结的东西,做一套真题。目的:查漏补缺,保持良好状态, 迎接考试。 在每一遍之后都要有一个深刻的思考过程 ,看看这一遍下来与上一遍有什么不同,如果发 现了赶紧记下来,若没有什么变化,这一遍相当于白看。 3. 书评 1) 陈文登《复习指南》★★★:强烈推荐。此书将不少东西模式化,优点是条理清楚, 解题步骤明了,尤其是高数,相当经典。缺点是一些活的、新的题型没有跟上变化、及时 修订,尤其是线代,故认为线代复习不要看《复习指南》。总体来说此书相当不错。 2) 李永乐《复习全书》★★:一直有人把《复习指南》和李的《复习全书》做比较。普 遍看法是李的简单、陈的难。个人认为不能用简单、复杂来评判。李的书知识点划分的更 为精细,应用的方法更为基础,或者说是让人更容易想到,这一点在 400 题中体现的更为 明显。同时,由于太细,也就导致稍嫌繁琐。总体来说此书不错。 3) 李永乐《线性代数辅导讲义》★★★:强烈推荐。此书我没做过,但做过的人都说不 错,且刚好弥补陈《复习指南》的不足。优点是题型多而全,一些方法比较经典,归纳的 也不错。缺点是难度不够,而且过细。 4) 《考研数学大纲解析》:适合用作参考,不做也罢。上边有错误解法讲解,可以看一 下。和指导书不一样的地方以此书为准(如数理统计区间估计方、圆括号等)。 5) 陈文登《题型精粹》★★:推荐一下。目前同类型的习题书不多。相比较而言,还算 可以的。做完后基本能达到练手的目的。和复习指南思路相同,更难一些。总结了的 公式和技巧,但考研一般不考。 6) 李永乐《 400 题》★★★:强烈推荐。与陈的书风格不同,是一本创新性质的模拟题 。有一定难度。做完陈的复习指南,再做此书,效果相当不错。做此书重点不是看答了多 少分,而是看从每一套题中学会了什么,找到了哪些自己掌握不牢的知识点,这个时候发 现比考试时发现好的多,建议每一套后都要有一个深刻的总结过程。 7) 李永乐《历年试题解析》★★:推荐一下。主要是没发现更好的真题书。优点是有错 误解法,书比较厚,解析的还行。缺点是没有采纳各家之长而达到经典的地步,个别题解 析方法不全。选真题书要慎重,解析一定要详细,即选“厚”一点的。做真题一定要注意 在 03 年前后的题型变化,也就是 03 年及其以后的要重点研究(各科都是如此)。 作者的话:考研结束了。本人以较高的分数考上了理想的大学。在近一年的备考过程中, 不断有人问我:“考研有没有什么捷径?”(其实,不走弯路就是捷径)。“怎么复习才 能考上?”为了回答上面的问题,我总结了一些考研的方法与技巧,希望对在考研路上行 走的学弟、学妹们有所帮助。本文由五篇文章组合而成,写作目的是:尽我个人的最大努 力帮助愿继续深造的人才们少走弯路,顺利考上研究生。参考资料:http://..com/question/60548521.html?si=3不合理,数一考高等数学上下,线性代数,概率统计,其中的知识点很繁杂,除了把书看懂,还要做大量的习题,所以至少需要 半年的复习时间

张宇考研数学1000题什么时候做

正者
八识
考研数学中难度中等的题目比较多,一定要重视对基本概念、基本定理、基本公式的扎实复习,参考汤家凤2017(考研数学复习大全》基础打好以后,后面的复习就会顺利很多。在基础打好之后,同学们要注意对真题的练习,反复做题,汤老师的(考研数学接力题典1800》非常好,梳理答题思路和答题技巧,适当做一些模拟题。

考研数学(数学一)考什么?

不主故常
日夜不休
数一:高等数学、线性代数、概率论与数理统计。数二:高等数学、线性代数。数三:微积分、线性代数、概率论与数理统计。

考研数学考的是什么内容?

火箭手
杉田
考研时的知识点基本上都是高数、线代与概率论的知识点。一般统考不会超过课本知识,但是难度比课本习题难度大很多。一般可以参考每年的数学考研大纲。数学一考研数学内容:高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数。一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质四、线性方程组考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验二、随机变量及其分布考试内容:随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布四、随机变量的数字特征考试内容:随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质五、大数定律和中心极限定理考试内容:切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计八、假设检验考试内容:显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验扩展资料:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2.授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1.经济学门类的各一级学科。2.管理学门类中的工商管理、农林经济管理一级学科。3.授管理学学位的管理科学与工程一级学科。参考资料:百度百科——数学考研大纲