欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一和数学二的区别

忽然而已
屈原
1、数学一:①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元 函数的微积分学、无穷级数、常微分方程)②线性代数(行列式、矩阵、向量、线性方程组、 矩阵的特征值和特征向量、二次型)③概率论与数理统计(随机事件和概率、随机变量及其概 率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数 理统计的基本概念、参数估计、假设检验)。数学二:①高等数学(函数、极限、连续、一元函数微积分学、常微分方程)②线性代数(行列式、 矩阵、向量、线性方程组、矩阵的特征值和特征向量)。一般情况下,工科类的为数学一和数学二:【考数一的专业】其中工学类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科和专业,以及授予工学学位的管理科学与工程的一级学科均要求使用数学一考试试卷。【考数二的专业】而工学类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中的二级学科和专业均要求使用是数学二考试试卷。除此之外,还有一些工科类要求的数学试卷难易程度是由招生单位决定的,比如材料科学与工程、化学工程与技术、地质资料与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科,对数学要求高的二级学科则选取数学一,要求较低的则选取数学二。【考数三的专业】经济类和管理类的为数学三,经济类和管理类包括经济学类的各一级学科、管理学类中的工商管理、农业经济管理的一级学科和授予管理学学位的管理科学与工程的一级学科。扩展资料全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。选拔要求因层次、地域、学科、专业的不同而有所区别。考研国家线划定分为A、B类,其中一区实行A类线,二区实行B类线。一区包括:北京、天津、河北、山西、辽宁、吉林、黑龙江、上海、江苏、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、重庆、四川、陕西。二区包括:内蒙古、广西、海南、贵州、云南、西藏、甘肃、青海、宁夏、新疆。参考资料:百度百科:全国硕士研究生统一招生考试

考研数学二跟数学一、数学三有什么区别呢?

大奖章
维也纳
数学一考试科目高等数学、线性代数、概率论与数理统计形式结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学  56%线性代数  22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分数学二考试科目高等数学、线性代数形式结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。2、答题方式答题方式为闭卷、笔试。3、试卷内容结构高等数学 78%线性代数  22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分数学三考试科目微积分、线性代数、概率论与数理统计形式结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%4、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分

考研 数学二 具体考什么内容

则忠
可谓乱矣
考研数学二的具体内容会因为地点、时间、政策等的变化而有所变化,但考试的大纲一般包括高等数学和线性代数。数二大纲:考试科目:高等数学、线性代数形式结构:1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。2、答题方式答题方式为闭卷、笔试。3、试卷内容结构高等数学 78%线性代数  22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高等数学(函数、极限、连续):考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数, 函数关系的建立 数列极限与函数极限的定义及其性质 ,函数的左极限和右极限 ,无穷小量和无穷大量的概念及其关系 ,无穷小量的性质及无穷小量的比较 ,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。拓展资料:数三大纲:考试科目:微积分、线性代数、概率论与数理统计形式结构:试卷满分及考试时间试卷满分为150分,考试时间为180分钟.答题方式:答题方式为闭卷、笔试.试卷内容结构:微积分 56%线性代数 22%概率论与数理统计 22%试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考研数学 百度百科

考研数学二真题及答案

小甲
金钱梦
您好!很高兴为您解答!考研数学二真题及答案你可以关注下文都资讯网。整理的非常丰富。考研数学二复习方法一。明确大纲要求,把握复习考点中的重点,难点  要仔细研读大纲,确保牢固地掌握基本概念、基本理论、基本公式,从10年的考试告诉我们不放过任何一个考点的复习,这是考研数学复习取得成功最基本的条件。同时还要学会解读大纲中的关键词:理解和掌握的知识点要求较高,历年的考题证明必考无疑,这些知识点要作为复习的重点反复地全面的强化巩固;了解、会计算这样的知识点要求较低,可以作为复习的次重点。二。系统化知识板块,分类进行强化练习与总结  大纲作为指引,为考生的复习指明了方向,可以让我们的复习更高效。三。细化易出错和重点题型,提高解题熟练度  再对照大纲,将主要知识点过一遍,查漏补缺,发现有忘记或还不太理解的知识点要回归到教材上重新学习一遍。四。全面的研究真题,领会命题规律,准备最后的冲刺  系统研究近十年历年的真题,反复比较,将重复率最高的知识点剔除出来,强化理解相应的基础概念、定理。同时利用接近真题难度的模拟题进行综合练习,培养做题的感觉,同时进一步查漏补缺。希望能帮到你!

考研数学二和数学三

分身
万物殊理
数学二:两大部分内容第一大部分:高等数学(上、下)【部分内容】一、函数、极限、连续二、一元函数微分学三、一元函数积分学四、多元函数微积分学五、常微分方程数学二相对数学一内容少了很多部分,主要体现在高数上,数学二不考察【向量代数和空间解析几何】【无穷级数】而且多元函数里没有【三重积分】、【曲线曲面积分】也不考察【无穷级数】,所以考数学二高数部分内容相对数学一少了很多!第二大部分:线性代数,考察线性代数所有章节,共六章第一章:行列式第二章:矩阵第三章:向量第四章:线性方程组第五章:矩阵的特征值及特征向量第六章:二次型线代部分数学一、数学二这几年都是一样的,要求也一样,考试题目也渐渐趋于相同。【注意】数学二没有概率论与数理统计这么课的考察。数学三:三大部分内容第一大部分:高等数学(上、下)【部分内容】【函数、极限、连续】【 一元函数微分学 】【一元函数积分学】【 多元函数微积分学 】【无穷级数】【 常微分方程与差分方程】第二大部分:线性代数,考察线性代数所有章节,共六章第一章:行列式第二章:矩阵第三章:向量第四章:线性方程组第五章:矩阵的特征值及特征向量第六章:二次型实际上,最近几年数学一、二、三在线代部分有趋于相同的趋势,所以复习上虽然三要求低一点但是如果按照一的难度来复习那么做题肯定没有问题第三大部分:概率论与数理统计,共七章1.随机事件和概率2.随机变量及其分布3.多维随机变量及其分布4.随机变量的数字特征5.大数定律和中心极限定理6.数理统计的基本概念7.参数估计和数学一相比无论是内容上还是难度上数学三都有所简化,但是内容依旧不少,还是要好好复习的!

考研数学二要考到120有多难 可以大概说下怎么做吗

黑武士
纪恋日
  你好,我不知道你考的什么专业,我就把我数学复习经验说一下吧,希望对你有所帮助。(里面有将有什么复习资料以及如何使用)  考研数学二用的教材是:  高数:同济大学应用数学系主编的《高等数学》(上、下册)(绿色封皮)  线性代数:同济大学应用数学系主编的《线性代数》(紫色封皮)  参考复习资料:  李永乐,王式安复习全书,基础过关660,李永乐的那本超越135  我不知道你考的什么专业,我就把我数学的复习经验说一下,希望对你有所帮助。  数学复习主要就是联系做题,我当时考的数一,用的是李永乐的复习全书(现在没有二李的版本了,只有李永乐和王式安那一本,也不错),全书总共看了三遍(从一开始就要看了,和看教材同步),可以说每道题都研究过,知道涵盖的知识点和做法。还有对于练习来说,基础过关660是很不错的选择,里面的小题都很巧妙,可以当大题研究的。在练习到一定程度以后,我就开始做真题,真题反复做了很多遍(至少有6,7遍),反复归纳总结(真题非常重要)。最后就是冲刺阶段的李永乐的那本超越135,这个也很不错。考研数学最重要的就是要保持解题的状态,懈怠三天,做题的水平就会退步。  数一和数二的复习方法没有什么本质的区别,你如果能按照上面的方法复习,120肯定是没有问题的。有什么需要咨询的可以接着问,希望可以帮到你。教材可以不看直接看全书吗 或者教材看了但是课后习题不做直接做全书吗可以直接看全书,这个没问题。

考研数学二要考哪些

江南
假大侠
2006年全国硕士研究生入学考试 数学二考试大纲 数 学 二 [考试科目] 高等数学、线性代数 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容。 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用 新增知识点:增加了“用定积分表达和计算质心” 考试要求 1.理解原函数概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式. 5.了解广义积分的概念,会计算广义积分. 6.了解定积分的近似计算法. 7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义。 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。 五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程。 3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y'). 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题.线性代数 一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质. 2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 新增知识点:向量的内积线性无关向量组的正交规范化方法 考试要求 1.理解n维向量的概念、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 5.了解内积的概念,掌握线性无关向量组的正交规范化的施密特(Schmidt)方法” 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。 4.理解非齐次线性方程组解的结构及通解的概念. 5.会用初等行变换求解线性方程组. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵” 3.理解实对称矩阵地特征值和特征向量的性质”考试要求的变化:1.将“2.了解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”调整为“2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”2.将“3.了解实对称矩阵地特征值和特征向量的性质”调整为“3.理解实对称矩阵地特征值和特征向量的性质”试卷结构 (一)题分及考试时间 试卷满分为150分,考试时间为180分钟。 (二)内容比例 高等教学 约80% 线性代数 约20% (三)题型比例 填空题与选择题 约40% 解答题(包括证明题)约60%。数学二,是报考农学的学生考(还有专硕),考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的

考研考数学二难吗?对于中等程度的考生大概能考多少分?难点在哪里?

笃行
  你好,我不知道你考的什么专业,我就把我数学复习经验说一下吧,希望对你有所帮助。(里面有将有什么复习资料以及如何使用)  考研数学二用的教材是:  高数:同济大学应用数学系主编的《高等数学》(上、下册)(绿色封皮)  线性代数:同济大学应用数学系主编的《线性代数》(紫色封皮)  参考复习资料:  李永乐,王式安复习全书,基础过关660,李永乐的那本超越135  我不知道你考的什么专业,我就把我数学的复习经验说一下,希望对你有所帮助。  数学复习主要就是联系做题,我当时考的数一,用的是李永乐的复习全书(现在没有二李的版本了,只有李永乐和王式安那一本,也不错),全书总共看了三遍(从一开始就要看了,和看教材同步),可以说每道题都研究过,知道涵盖的知识点和做法。还有对于练习来说,基础过关660是很不错的选择,里面的小题都很巧妙,可以当大题研究的。在练习到一定程度以后,我就开始做真题,真题反复做了很多遍(至少有6,7遍),反复归纳总结(真题非常重要)。最后就是冲刺阶段的李永乐的那本超越135,这个也很不错。考研数学最重要的就是要保持解题的状态,懈怠三天,做题的水平就会退步。  数一和数二的复习方法没有什么本质的区别,你如果能按照上面的方法复习,120肯定是没有问题的。有什么需要咨询的可以接着问,希望可以帮到你。

考研数学二,从暑假开始看来得及不?应该怎么复习?

伊甸园
德之末也
你好,我刚刚考完研。看了你的问题,感觉你目前在数学复习的问题上还存在比较多的疑惑。希望能结合自己的一点经验对你的问题进行一下解答,以期对你有所帮助: 首先说下我对考研数学复习过程的理解和规划—— 数学复习以教材为先,刚开始的着手,应在教材上多下功夫,通读一遍,找一本有答案的参考书,把课后题都做一遍。至于定理公式,要重视在具体题目重的灵活运用,不要硬记推导过程(当然,有些推导过程本身就是不错的练习题,那可以练练),然后在下学期和暑假找一本参考书(陈文灯或李永乐都可以)做做,多做几遍,有余力可以两者都做。写到这里,针对你的问题,我建议你至少暑假前把教材看一遍,这样会比较从容!暑假结束后,新大纲就下来了,那时你就要根据新大纲对教材查缺补漏,同时开始做历年真题,把真题一定多做几遍。到这时候,你对考研数学就已经有了一个很清晰,系统的把握了,大约是在11月份。然后,你需要回归教材,把知识点再梳理一遍,同时开始重视定理以及公式的推导,这两年考研答题有考查基本定理的趋势,积分中值定理、拉格朗日中值定理已经考到,所以你要把重要定理练到熟练,然后在最后阶段(12月中下旬)连同真题中的做错的题再看看,就可以上战场啦!! 以上就是我的一点建议了,真诚的希望对你有所帮助!来自:求助得到的回答