欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学三靠刷题就能140分吗?

二十秒
蜚闻记
刷题肯定要刷,但是弄懂一道题,就能知道这一类型的方法,更好哦附上三步学习方法:第一,深刻理解基本概念和基本理论。概念是事物的本质特征,有些概念的考查几乎是每年必考的,如导数的概念,不仅仅是利用导数概念进行计算,有时还需要理解导数概念的内涵与外延,这也是我们做题的一些关键,如导数的等价定义、导数的几何意义、导数与可微、连续的关系等等。有些基本理论,如洛必达法则求不定式极限,几乎是每年必考的,对于洛必达法则的内容,以及洛必达法则如何运用,运用时需要注意一些什么条件,这都是我们要搞明白的。对于概念和理论一定要理解到位,这些是我们做题时的灵魂,缺少了它们,做题时你就会觉得毫无头绪。第二,掌握基本方法,灵活应用基本方法解题。方法是解题过程中的框架,只有熟悉基本方法,做题时才能以不变应万变。如求函数的极值是导数应用中一类常考的题型,求解的步骤一般如下:求函数的定义域、求函数的导数、找出函数的驻点及不可导点、利用判断极值的第一充分条件进行验证,看看驻点和不可导哪些点满足左右两边单调性相反。此种类型的题目以解答题和选择题的形式在历年真题中都考过。此外还有,比如交换积分次序、改变坐标系等等都属于基本方法的考查,有些题目甚至都不需要计算就可以找出答案。对于基本方法要求灵活应用,不能死记硬背。第三,适当练习中档难度的题目即可。数学在复习过程中,做题肯定是少不了的,但是同学们做题时一定要把准方向,不能做偏题、怪题和难题。在考试试卷中,至少有70%的题目是基础题,也就是难度在0.3-0.8之间。考试中不会考太难的题目。所以大家在复习过程中不要研究太难的题目,没太大的必要。多做做基础类的题目,后期练习一下带有综合性的基础类题目即可。复习时以真题的难度为导向进行复习即可。

考研数学三真题

变态男
彼故知之
您好!很高兴为您解答!考研数学三真题你可以关注下文都资讯网。考研数学的复习要理清重点难点疑点。 注重基础,找出联系,强化细节  要做到对知识点清晰分层,实际上不是一个简单的过程,考研数学历来以考试内容多、知识面广、综合性强。所以建议考生应当深刻理解考试大纲、深刻了解自己的基础情况。且不能仅想通过一些“解题技巧”成功,要清楚任何知识的积累都是长期努力的结果,都是需要我们踏踏实实来努力的,切勿投机。  学会做题、总结,善于归纳  对于数学复习本阶段最明显的作用是强化技巧,发现自己的薄弱环节。数学能力的提高,是建立在一定的题量上的,所以一定要做习题。但是,同样的做了很多题,有的人成绩迅猛提高,有的人却止步不前,原因就是方法和总结。因此,考生在日常复习过程中要善于梳理知识点,适当的进行习题训练,对于同类型的题目,考生要尽量完整地做,包括所需的公式,各步的计算,千万不能眼高手低,有时候一看题觉得自己会做就放弃演算过程,这是不好的习惯。只有每次在做题时善始善终,才能提高做题的准确程度,甚至发现自己的一些思维漏洞。希望能帮到你!http://wenku..com/search?word=2014++%BF%BC%D1%D0%CA%FD%D1%A7%C8%FD&lm=0&od=0&fr=top_home

考研数学三指什么?

明日复见
露西亚
考研数学试题的考查对象考研试题考查的是各个科目的主干知识,试题注重对基本知识、基本能力和基本方法的考查,这类题目在试卷中占到40%左右。所以考生在平时复习时应重视对课程主干知识、基本思想和基本方法的理解和掌握。文都教育考试中心出的《高数过关与提高》就很重视对基本思想和基本方法的训练。试卷中也会出现对重要结论与证明方法考查的试题,这类题目的出现既可考查考生的抽象思维和逻辑推理能力,又能引导学生重视对课程中重要内容的学习。试题注重对综合运用数学知识、分析和解决问题能力的考查,会出现将不同学科知识融合在一起综合考查的试题及对应用问题考查的题目,这类问题提醒同学们注意问题中的数学建模及应用数学解决问题的能力的培养。考研数学试题的难度分析考研数学三个卷种三种题型中大多数题目的难度都会在中等难度。我们可以看看2008年考研试题以作参考。2008年四个卷种的选择题与填空题的难度都较解答题大,这实际上不同题型具有的不同考查功能。比如,选择题主要考查考生对数学概念、数学性质的理解及简单推理、判定、计算和比较的能力。填空题主要考查考生对基本概念、基本原理、基本方法及数学的重要性质的掌握,一般不会考省去解答过程的大计算题。这方面的训练可通过《客观题1500题》达到专项练习的效果。解答题除考查基本运算力外,主要考查考生的逻辑推理和综合运用能力,因而对考生来说试题难度较大。考研数学试卷得分率的分析2008年考研试卷中发现一些考生对基本概念和基本方法的掌握存在问题,一些考生的基本运算能力有待提高,一些考生不能利用所学知识处理一些新型问题,分析问题、解决问题的能力不强。这就导致一些题目在出题人角度来说难度并不大,但考完后发现平均得分率很低。比如2008年数一第19题,得分率只有22.6%,本身这种题是常规题型,得分率低的原因是考生没有掌握将函数展开成余弦级数的基本方法,还有一部分考生不会基本的分部积分法。再比如线性代数的证明题得分率也较低,这是因为一些考生没有掌握好相关的结论与方法,但还有一部分考生选择放弃线性代数的证明题,因此不论题目的难度如何低,得分率都不会高。由此给正在复习考研的同学提个醒,复习的时候各个科目需平衡发展,万不可捡芝麻丢西瓜。

请问考研数学三考啥啊?

失之也生
东郭子曰
数学三包括了:微积分、线性代数、概率论与数理统计。它常被称为经济数学适用于1、经济学门类的应用经济学一级学科中统计学、数学经济学二级学科、专业。2、管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业。3、管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业。它是最基础的内容,比数学一简单。考研方面的知识你可以到我的空间里看哦。。。加油考研数学三大纲考试科目  微积分、线性代数、概率论与数理统计考试形式和试卷结构  考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题)9小题,共94分考试内容之微积分  一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与 级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解 . . . 及 的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.考试内容之线性代数  一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考试内容之概率论与数理统计  一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数 的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、 分布和 分布得上侧 分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.http://ke..com/view/5065420.htm#4本回答被网友采纳

考研数学数学三真题用哪个

通达
目欲视色
真题其实要求没有那么高,用哪个都行,有答案就行了。

考研数学三网上练习题做谁的?

电影圈
牢曰
封面时穿的一件衣服作为拍品,以一元起拍,拍了出去.这时 ,光良唱起了大学生最喜欢听的一首《童话》.大家又再一次为大学生捐款,现场十分感人.我也留着泪 ,给节目组发短信,因为一条短信就代表着我的一片心意.最终,光良顺利地为这位大学生筹齐了医药费 .这时,现场又响起那熟悉的旋律. “……你要相信,相信我们会像童话故事里,幸福和快乐是结局.”-----------------------------让世界充满爱爱,无处不在.我在一份报纸上,看到了这样的一件事.

考研数学三是什么?

陶陶兀兀
肩高于顶
微积分、线性代数、概率论与数理统计。试卷内容结构:微积分 56%;线性代数 22%;概率论与数理统计 22%。微积分函数、极限、连续考试要求:1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2、了解函数的有界性.单调性.周期性和奇偶性;3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4、掌握基本初等函数的性质及其图形,了解初等函数的概念;5、理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系;6、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;7、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质。扩展资料:常微分方程与差分方程考试要求:1、了解微分方程及其阶、解、通解、初始条件和特解等概念;2、掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法;3、会解二阶常系数齐次线性微分方程;4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程;5、了解差分与差分方程及其通解与特解等概念;6、了解一阶常系数线性差分方程的求解方法;7、会用微分方程求解简单的经济应用问题。参考资料:考研数学三大纲--百度百科

考研数学三参考资料 想问一下数学三那些资料比较好,说的资料比较好!谢谢啦!

天堂口
杜十娘
对于考研数学:这个阶段是打实基础的阶段,以数学教材为主吧,高数是一大块,概率和线代相对简单一些。多把时间往高数上面倾斜一下吧,里面占的分数也多一些。多看教材,就像第一遍学的一样,把教材的知识点,定理证明什么的都好好理解一下,最好配合上去年的数学考研大纲,有所侧重。对于课后习题,不建议全做,挑有代表性的做一部分,其他的想想思路配合答案书看看就可以了,全做太浪费时间了,只要把方式方法解题技巧掌握了就可以了。之后就是用复习全书、660什么的,然后就是真题了。把时间和进度好好规划一下吧。慢慢的学着,心不能急。给你贴一个参考书目总结,我从别人那里借鉴过来的。希望对你有帮助。望采纳1、李永乐李正元《数学复习全书》*****,同样效用的有陈文登的《数学复习指南》****,不过文登的重技巧,精华在微积分,永乐的重基础,而且从近三年的考试来看,全书更加适合考研,文登的有部分内容超纲。如果已经买了文登那本复习指南,强烈推荐再买本永乐的《线性代数辅导讲义》*****,因为永乐的线代深入浅出,非常好,可以弥补文登的线代那部分的不足。想考更高分的战友可以两本都选(个人认为全书是必备的); 2、数学基础过关660题*****,不是必备,但是在前期作为打基础的练习非常不错。 3、历年真题。最好的有两个版本,一个是永乐的《历年试题解析》*****,好处在于按章节分类,题目后面还有评注,历年试卷放前面可以自测;另一个西安交大的武忠祥的《历年数学考研试题研究》****,好处在于按章节分类,还有考试考点分析和分类统计。每章后面有同步练习。如果买不到这两本,其他任何版本的真题都一样***。还有一个推荐大家买的就是可以单买一本聚焦FOCUS的考研真题集*****,性价比极高,只要2元,多买两本都不会亏,因为真题多做几遍分数就多长几分。详解就算了。 4、《数学最后冲刺超越135分》*****;或者文登的《题型集粹与练习题集》****作为最后冲刺阶段的查漏补缺。 5、李永乐《数学全真模拟经典400题》至少做三遍*****。其他的模拟题不要多买,虽然说是题海战术,但是太多了浪费,而且不做影响心情。恩波的模拟题***,考试虫的模拟题***,可以下载到合工大的题目最好****,跟真题比较接近 6、另外比较好的辅导书有《考研数学单项选择题解题方法与技巧》****和概率论与数理统计讲义(提高篇)****。有条件的可以下载新东方的网络课件,这个课件已经足够了,最好能下到永乐05年的线性代数讲课*****,非常经典,还有06费允杰的概率讲课也非常经典*****。其他田根宝的线代和概率课件就不用了,不推荐;还有文登的冲刺讲课也没有必要,辅导班就更加不用上了。原则上是能自己看书就不要课件,因为听课非常浪费时间。实在基础不行就听课吧。 记住一点,好的书可以让你更加快捷的到达终点。但是书不在多,一定要多做几遍并且总结方法。课件是非常浪费时间的,能看书就不要使用课件。我们那时考得时候用的是李永乐全套,基本上都用了,他的书一直就很好的,尤其是历年真题,建议多做几遍。

谁知道考研数学一二三是什么意思?有什么区别?

千堂
乃下求之
考研数学针对不同专业的考生有不同的考试内容,我们在复习考研数学之前首先要搞清楚考研数学一二三的区别。