欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

请问一下考研数学三题型分布,只有填空题和选择题吗?分值各占多少?

日以心斗
为我
考研数三:微积分 56% ,线性代数 22% ,概率论与数理统计 22% ,试卷题型结构为:单项选择题选题8小题,每题4分,共32分,填空题 6小题,每题4分,共24分,解答题(包括证明题) 9小题,共94分内容拓展:考研数学的选择题和填空题客观题总共14个题目,做题时间大概应占3小时中的1个小时,后面9个解答题是占2个小时。120分钟除以9,大概每个解答题平均而言是13分钟。有的解答题所用时间会相对短一些,10分钟左右或者不到10分钟;有的解答题有几问运算量比较大,用的时间就会相对多些,15分钟甚至更长一些,考生可以根据自身情况自行调整。一般而言,在难度上,客观题也就是选择填空题会简单些,那么考生还是应该先做简单的,这样既能拿到应该得到的有效分数,也可以在做题难度上有个过渡,使考试状态渐入佳境。做解答题时,应当先做常见的题目,从熟题到生生,这样既可以增加信心,也能够为后面的陌生题目节省下集中的时间充分思考解答。

考研数学教育学:考那些内容,有什么题型

反复
戚顾
  学硕统考题型如下: 单项选择题 45小题,每小题2分,共90分  辨析题 3小题,每小题15分,共45分  简答题 5小题,每小题15分,共75分  分析论述题 3小题,每小题 30分,共90有些院校是自主命题,可能就没有单选题。专硕:一般是名词解释、简答、论述参考考试大纲呀!

考研数学考什么内容?

麻婆岛
斗牛犬
数一:高等数学、线性代数、概率论与数理统计。数二:高等数学、线性代数。数三:微积分、线性代数、概率论与数理统计。官方电话官方服务官方网站

考研数学二包括哪些内容

已夫
大王失国
数学二考试大纲及要求试卷结构 (一)题分及考试时间 试卷满分为150分,考试时间为180分钟. (二)内容比例 高等教学 约80% 线性代数 约20% (三)题型比例 填空题与选择题 约40% 解答题(包括证明题)约60%. 全国硕士研究生入学考试 数学二考试大纲 [考试科目] 高等数学、线性代数、 高等数学. 一、 函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念. 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容. 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4. 会求分段函数的一阶、二阶导数. 5.会求隐函数和由参数方程所确定的函数以及反函数的导数. 6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理. 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.掌握用洛必达法则求未定式极限的方法. 10.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用 考试要求 1.理解原函数概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式. 5.了解广义积分的概念,会计算广义积分. 6.了解定积分的近似计算法. 7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法. 五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程简单应用 考试要求 1.了解微分方程及其解、阶、通解、初始条件和特解等概念. 2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程. 3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y'). 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题. 线性代数 一、 行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质. 2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.理解n维向量的概念、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.会用初等行变换求解线性方程组. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵转化为相似对角矩阵. 3.了解实对称矩阵的特征值和特征向量的性质

考研数学复习,平常做过的题还是会错,总是记不住,怎么办?

温柔乡
怀表
养成做题仔细的好习惯,制作好错题集。从每一年的考研数学考试成绩分析来看,好多同学平时眼高手低、考试时由于粗心大意而失掉了不该失掉的分,后悔莫及,所以同学们平时就要养成做题仔细的好习惯,同时建议同学们制作一个错题集,这样我们在以后的复习中,可以反复着重复习这些错题,不但节省了复习时间,而且还提高了复习质量和效率。我看很多同学会在临考做很多题可以用看看汤家凤2017《考研数学接力题典1800·数学一》,考研数学的复习需要足够的耐心和毅力,当自己遇到难题或者学 习感觉累的时候要做适当的休息或者跟其他同学出去走走适当的运动一下来调节自己,多和研友互相交流复习经验技巧,扬长补短。好的,可以试试好好看这本会有提高的

考研数学三,涉及到的高中数学知识点有哪些?

陌路人
根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。须使用数学三的招生专业1.经济学门类的各一级学科。2.管理学门类中的工商管理、农林经济管理一级学科。3.授管理学学位的管理科学与工程一级学科。考试大纲:考试科目:微积分、线性代数、概率论与数理统计试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构微积分56%线性代数22%概率论与数理统计22%4、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分中学的叫初等数学大学的教高等数学,不涉及所学专业知识的情况下,考研数学是不考几何部分的,也就是不涉及各种圆。只不过有的时候讲课有讲,壁如微积分部分老师应该会提一下割圆术什么的都是导数微分等代数部分的,几何是不学的。高中一般有以下内容:集合与简易逻辑,函数,三角函数,解三角形,平面解析几何,立体解析几何,平面向量,空间向量,统计与概率,排列组合与二项式,圆锥曲线,导数,复数,数列,不等式;其中涉及的思想有:数形结合思想,转化思想,整体思想,等等。初等数学是微积分的基础;微积分是线代和概率的基础。高数中的二重积分对求概率论里的分布是有很大影响的,另外,线性代数里的线性相关与线性无关有影响到高数中求解微分方程。四则运算,代数式只学到了一元,函数也是初等函数中的一次二次函数,反比例函数,指数对数函数,基本的三角函数等等。等到了高数里,就要学到多元函数,多元方程,高阶导数,甚至反双曲函数(还好只学不考),还有各种以人名命名的公式定理。

张宇考研数学1000题什么时候做

冰之下
殉难者
考研数学中难度中等的题目比较多,一定要重视对基本概念、基本定理、基本公式的扎实复习,参考汤家凤2017(考研数学复习大全》基础打好以后,后面的复习就会顺利很多。在基础打好之后,同学们要注意对真题的练习,反复做题,汤老师的(考研数学接力题典1800》非常好,梳理答题思路和答题技巧,适当做一些模拟题。

考研数学都有什么题型啊?

回魂刀
数学一: 选择8题。其中高数4题,线代概率都是2题。 填空6题。其中高数4题,线代概率各1题。 大题9题。其中高数5题,线代概率都是2题。我是2012年考研的,数学一。希望你帮你。选择题,填空题,简答题(包括证明题)其中选择题8题,有4题是高数,剩下4题线性代数和概率论数理统计各两题。而填空题6题,高数4题,剩下两题是线【{{[【【 http://www.kuakao.com/html/87/n-432887.html#471 性代数和概率论的。最后是简答题有5题是高数的,线性代数和概率论各两题,而且顺序都是高数线性代数概率论。

考研数学(数学一)考什么?

痛定思痛
无根无蒂
数一:高等数学、线性代数、概率论与数理统计。数二:高等数学、线性代数。数三:微积分、线性代数、概率论与数理统计。