欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研中数学一二三是自己选吗

所作所为
恶女帮
绝对不是自己选,这个是根据你报的专业来决定的,具体如下:数学分为三类,最大的区别在于知识面的要求上:数学一最广,数学三其次,数学二最低。这个差异体现在细节上,就成了数学一、二、三在考试内容和适用专业上的不同之处。数学一:针对对数学要求较高的理工类:a.工学门类的力学,机械工程,光学工程,仪器学与技术,冶金工程,动力学工程及工程物理,电气工程,电子科学与技术,信息与通信工程,控制科学与工程,计算机科学与技术,土木工程,水利工程,测绘科学与技术,交通运输工程,船舶与海洋工程,航空宇航科学与技术,兵器科学与技术,核科学与技术,生物医学工程等一级学科中所有的二级学科,专业。b.工学门类的材料与工程,化学工程与技术,地质资源与地质工程,矿业工程,石油与天然气工程,环境科学与工程等一级学科中对数学要求较高的二级学科,专业。c.管理学门类中的管理科学与工程一级学科。数学二:针对对数学要求低一些的农、林、地、矿、油等专业适用专业:工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程第一级学科中所有的二级学科、专业。数学三:针对管理、经济等方向适用专业:a.经济学门类的理论经济学一级学科中的所有二级学科、专业;b.经济学门类的应用经济学一级学科中的统计学科、专业、统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、财政学(含税收学)、金融学(含保险学)、产业经济、国际贸易学、劳动经济学、国防经济。c.管理学门类的工程管理一级学科中的二级学科、专业;企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。d.管理学门类的农林经济管理一级学科中的所有二级学科、专业。▶二、难度系数数一考得比较全面,高数,线代,概论都考,而且题目偏难。数二不考概论,而且题目较数一容易。数三考得也很全面,题目的难度不比数一简单多少。

考研数学三是什么?

摩天楼
惊天雷
微积分、线性代数、概率论与数理统计。试卷内容结构:微积分 56%;线性代数 22%;概率论与数理统计 22%。微积分函数、极限、连续考试要求:1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2、了解函数的有界性.单调性.周期性和奇偶性;3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4、掌握基本初等函数的性质及其图形,了解初等函数的概念;5、理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系;6、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;7、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质。扩展资料:常微分方程与差分方程考试要求:1、了解微分方程及其阶、解、通解、初始条件和特解等概念;2、掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法;3、会解二阶常系数齐次线性微分方程;4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程;5、了解差分与差分方程及其通解与特解等概念;6、了解一阶常系数线性差分方程的求解方法;7、会用微分方程求解简单的经济应用问题。参考资料:考研数学三大纲--百度百科

考研数学三选什么好的辅导书?谢谢了!!急需!!!

水之乡
女社长
首先必须先看一遍教材,打好基础。把书中的概念,公式、定理都要弄明白,会做一些简单的题。大概用是一个月的时间。然后就开始做李永乐的《复习全书》,建议你做两遍,或者做完一遍后,挑学的不扎实的再做一遍。这段时间最好不要超过两个月。之后就是要做真题,多研究真题,对考研是很有帮助的。还是推荐你用李永乐的真题书,因为他的书把真题归类了,也有按照年份排的。你可以根据自己的喜好。做真题的时间一般也是一个月。鉴于10年数学的难度太过变态,推荐你做完真题后,做做李永乐的《400题》,这套题很有难度,但是出的很好,10年数学的难度是跟他很类似的。《400题》你可以一直做到考前十几天。再最后几天,就是看自己做错的题了,还有基本的公式定理,就不用再做其他题了。

考研数学三要用什么复习资料好 有什么好的推荐吗

鲁胜
匠伯不顾
主要资料包括:《考研数学复习指南》、《考研数学模拟考场15套》、《考研数学400题》。辅助资料包括:相关教材(高数、线代、概率与统计)、天道考研讲义。关于数学很多人纠结是哪个书好,说句真心话,都一个样,你只要坚持一套,看网校视频,刷题都完成了,错题算个3、4遍,就会发现万法自然,殊途同归。我当时从六月份开始刷高数部分,八月份刷线性代数,九月份开始刷的概率讲义,配合着天道考研网校上老师的讲解视频,逐个击破知识点。从九月中旬开始,我没做过一道新题,就是把之前看的书,做的题反复的刷,反复的做,不断补全我的知识体系。一直到11月份才拿出真题开始做,10年真题,包括大家普遍认为非常难的16年的数一真题我都能达到130分往上。不推荐大家刷完李永乐的660和分解同步练习然后又去做张yu的1000题,太多,来不及消化。你要明白,当你上考场的时候,如果对每部分的内容都能像第yi遍复习它的那种程度,整张卷子百分之九十五是没问题的。所以,选择一套书,然后坚持做,保证那一套书里的每一道题都掌握了,就稳稳地了。我数学概率最后一题的那个公式我忘了……,第yi问,所以整道题都错了,138分。

考研数学三用什么教材好?

亚瑟王
那道门
对于考研数学:以数学教材为主,高数是一大块,概率和线代相对简单一些。多把时间往高数上面倾斜一下吧,里面占的分数也多一些。多看教材,就像第一遍学的一样,把教材的知识点,定理证明什么的都好好理解一下,最好配合上去年的数学考研大纲,有所侧重。对于课后习题,不建议全做,挑有代表性的做一部分,其他的想想思路配合答案书看看就可以了,全做太浪费时间了,只要把方式方法解题技巧掌握了就可以了。之后就是用复习全书、660什么的,然后就是真题了。把时间和进度好好规划一下吧。慢慢的学着,心不能急。望采纳1、李永乐李正元《数学复习全书》*****,同样效用的有陈文登的《数学复习指南》****,不过文登的重技巧,精华在微积分,永乐的重基础,而且从近三年的考试来看,全书更加适合考研,文登的有部分内容超纲。如果已经买了文登那本复习指南,强烈推荐再买本永乐的《线性代数辅导讲义》*****,因为永乐的线代深入浅出,非常好,可以弥补文登的线代那部分的不足。想考更高分的战友可以两本都选(个人认为全书是必备的); 2、数学基础过关660题*****,不是必备,但是在前期作为打基础的练习非常不错。 3、历年真题。最好的有两个版本,一个是永乐的《历年试题解析》*****,好处在于按章节分类,题目后面还有评注,历年试卷放前面可以自测;另一个西安交大的武忠祥的《历年数学考研试题研究》****,好处在于按章节分类,还有考试考点分析和分类统计。每章后面有同步练习。如果买不到这两本,其他任何版本的真题都一样***。还有一个推荐大家买的就是可以单买一本聚焦FOCUS的考研真题集*****,性价比极高,只要2元,多买两本都不会亏,因为真题多做几遍分数就多长几分。详解就算了。 4、《数学最后冲刺超越135分》*****;或者文登的《题型集粹与练习题集》****作为最后冲刺阶段的查漏补缺。 5、李永乐《数学全真模拟经典400题》至少做三遍*****。其他的模拟题不要多买,虽然说是题海战术,但是太多了浪费,而且不做影响心情。恩波的模拟题***,考试虫的模拟题***,可以下载到合工大的题目最好****,跟真题比较接近 6、另外比较好的辅导书有《考研数学单项选择题解题方法与技巧》****和概率论与数理统计讲义(提高篇)****。有条件的可以下载新东方的网络课件,这个课件已经足够了,最好能下到永乐05年的线性代数讲课*****,非常经典,还有06费允杰的概率讲课也非常经典*****。其他田根宝的线代和概率课件就不用了,不推荐;还有文登的冲刺讲课也没有必要,辅导班就更加不用上了。原则上是能自己看书就不要课件,因为听课非常浪费时间。实在基础不行就听课吧。 记住一点,好的书可以让你更加快捷的到达终点。但是书不在多,一定要多做几遍并且总结方法。课件是非常浪费时间的,能看书就不要使用课件。

请问考研数学三要用什么复习资料好?

许谦
矛盾
你好,考研数学复习:  高数:同济大学应用数学系主编的《高等数学》(上、下册)(绿色封皮)  线性代数:同济大学应用数学系主编的《线性代数》(紫色封皮)  概率:浙江大学编的《概率论与数理统计》(蓝色封皮)  参考复习资料:李永乐,王式安复习全书,基础过关660,李永乐的那本超越135。  数学复习主要就是练习做题,我当时考是的数一,用的是李永乐的复习全书(现在没有二李的版本了,只有李永乐和王式安那一本,也不错),全书总共看了三遍(从一开始就要看了,和看教材同步),可以说每道题都研究过,知道涵盖的知识点和做法。还有对于练习来说,基础过关660是很不错的选择,里面的小题都很巧妙,可以当大题研究的。在练习到一定程度以后,我就开始做真题,真题反复做了很多遍(至少有6,7遍),反复归纳总结(真题非常重要)。最后就是冲刺阶段的李永乐的那本超越135,这个也很不错。数学最重要的就是要保持解题状态,懈怠三天,做题的水平就会退步。  数一和数三也没有本质的区别,你要是能做到上述说的,我估计130应该不难。非常谢谢你!另外市面上除了永乐和式安版本,还有李元正范培华版本,这本跟永乐式安版本有什么区别,那一本更好一点啊?用李永乐和王式安的比较多,你可以考虑用这本。两本的区别其实不大。谢谢你!不好意思,还忘了有人推荐用陈文灯那本,那这本认为如何呢,跟永乐有什么区别的呢?  我个人觉得李永乐的比较好。其实全书这东西也不会差很多,关键在于多看,我李永乐的书看了三遍,数一145分。所以我觉得复习材料的区别不是很大,差别还在于与努力。

考研数学三是那些科目?

若夫人者
断头气
数 学 三 考试科目 微积分、线性代数、概率论与数理统计 试 卷 结 构 (-)总分 试卷满分为150分 (二)内容比例 微积分约56% 线性代数约22% 概率论与数理统计约22% (三)题型比例 填空题与选择题约45% 解答题(包括证明题)约55% 注:考试时间为 180分钟 微 积 分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数 基本初等函数的性质及图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.了解数列极限和函数极限(包括左、右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,掌握利用两个重要极限求极限的方法. 7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系. 8.理解函数连续性的概念(含左连续与右连续), 会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程. 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解柯西(Cauchy)中值定理,掌握这三个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法,了解函数极值的概念 掌握函数极值、最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线. 9.会描绘简单函数的图形. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法和分部积分法 反常(广义)积分 积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数 掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法. 3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题. 4.了解反常积分的概念,会计算反常积分. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的广义二重积分 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的广义二重积分并会计算. 五、无穷级数 考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区问(指开区间)和收敛域 幂级数的和函数 幂级数在收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和. 6. 掌握 、 、 、 及 的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展开成幂级数. 六、常微分方程与差分方程 考试内容 微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程. 4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会用微分方程和差分方程求解简单的经济应用问题. Back 线 性 代 数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.理解行列式的概念,掌握行列式的性质. 2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质. 3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性元关 向量组的极大线性元关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组. 2. 掌握非齐次线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组的结构及通解的概念. 5. 掌握用初等行变换求解线性方程组的方法. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会甩正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法. Back 概 率 论 与 数 理 统 计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复事件 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算. 2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法、乘法公式、全概率公式及贝叶斯(Bayes)公式等. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布 考试内容 随机变量 随机变量的分布函数及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1.理解随机变量的概念;理解分布函数 的概念及性质;会计算与随机变量有关的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用. 3. 理解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布 、指数分布及其应用,其中参数为 的指数分布的密度函数为 5.会求随机变量函数的分布. 三、多维随机变量的分布 考试内容 多维随机变量及其分布函数 二维离散型随机变量概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度 边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布 考试要求 1.理解多维随机变量的分布的概念和基本性质. 2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度.掌握二维随机变量的边缘概率分布和条件分布. 3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义. 5.会根据两个随机变量的联合分布求其函数的分布;会根据多个相互独立随机变量的联合分布求其函数的分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征. 2.会随机变量函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyhev)大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理 考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律). 2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率. 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为: . 2.了解产生 变量、 变量和 变量的典型模型;理解标准正态分布、 分布、 分布和 分布的分位数,会查相应的数值表. 3.掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布. 4.理解经验分布函数的概念和性质,会根据样本值求经验分布函数. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选 标准 区间估计的概念 单个正态总体均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验正估计量的无偏性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数值特征的置信区间的求法. 4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.掌握单个及两个正态总体的均值和方差的假设检验.数学资料陈文登的归纳的不错,不过开始看挺困难的,深度也大。李永乐,李正元的也不错,对历年真题总结很有针对性。 至于当年考研大纲一般六月下旬教育部推出,书店都有卖的。高数,线代,概率统计

考研数学一 二 三 四有什么区别?

秋本
钢之恋
考研数学针对不同专业的考生有不同的考试内容,我们在复习考研数学之前首先要搞清楚考研数学一二三的区别。

考研数学总共有哪几种,具体考什么?

太极拳
沙耶
考研数学一高等数学、线性代数、概率论与数理统计。高等数学占56%,线性代数占22%,概率论与数理统计占22%。考研数学二高等数学、线性代数。高等数学占78%,线性代数占22%。考研数学三微积分、线性代数、概率论与数理统计。微积分占56%,线性代数占22%,概率论与数理统计占22%。扩展资料:根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。招生专业须使用的试卷种类规定如下:一、须使用数学一的招生专业1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2、授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1、经济学门类的各一级学科。2、管理学门类中的工商管理、农林经济管理一级学科。3、授管理学学位的管理科学与工程一级学科。参考资料:百度百科-考研数学