欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

1997至2000年考研数学三真题及答案

夺命债
鬼宿舍
你们学校没有图书馆吗 去图书馆找找就是了历年真题和详解市面上也有出到07年的啊

考研数学三真题,零零年以前有必要做吗?有参考价值吗?

或谓之生
时间充足的话是有必要做的,九几年的题拿出来重新考也是很常见的。时间不够的话可以只做最近十年的。

2000年-2016年考研数学一历年真题完整版(Word版)

爱琳娜
弗知内矣
去百度文库,查看完整内容>内容来自用户:半冷不暖的色调2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_____________.(2)曲面在点的法线方程为_____________.(3)微分方程的通解为_____________.(4)已知方程组无解,则= _____________.(5)设两个相互独立的事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相等,则=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设、是恒大于零的可导函数,且,则当时,有(A)(B)(C)(D)(2)设为在第一卦限中的部分,则有(A)(B)(C)(D)(3)设级数收敛,则必收敛的级数为(A)(B)(C)(D)(4)设维列向量组线性无关,则维列向量组线性无关的充分必要条件为(A)向量组可由向量组线性表示(B)向量组可由向量组线性表示(C)向量组与向量组等价(D)矩阵与矩阵等价(5)设二维随机变量服从二维正态分布,则随机变量与不相关的充分必要条件为(A)(B)(C)(D)三、(本题满分6分)求四、(本题满分5分)设,其中具有二阶连续偏导数具有二阶连续导数,求五、(本题满分6分)计算曲线积分,其中是以点为中心为半径的圆周取逆时针方向.六、(本题满分7分)设对于半空间内任意的光滑有向封闭曲面(A) -1③ (C)(D)(4)(A)(13)(C)设(C)数学15(A.(2)(A)设随机变量(A)(23) (

考研数学三历年真题难度变化怎么样?

丰山犬
桃夭
数学16年是最难的,其它年份差不多。祝你考研成功!

考研数学三真题,买谁的好一些?另外零零年以前的真题有必要做吗?

杨仆
葛生
00年以前的应该是上个月就要做完的,现在没必要,考研题不要复习太老的题,2000年以后足矣,真题多练习多琢磨你会找到感觉,同时立足书本。

请问谁有历年考研数学三真题及答案详解,2000-2012,电子版的。 请发到我邮箱newshuang2008@163.com 谢谢!

第二号
大将军
网上资料不怎么齐全。可以都百度我的用户名,上面都有你要的资料的。

考研数学 十年前的真题有必要做吗?

两毛五
德则不冒
  只做是十年的就够了,等多做到15年,再往前就没什么参考价值了。  其实做真题不是目的,关键是总结,总结出题方向和出题规律, 做题只是一种检验。  所以关键是做题后的总结工作,做题只是发现问题的,重要的在于怎样根据 发现的问题去查缺补漏,各个击破。

考研数学考的是什么内容?

红高粱
渭阳
考研时的知识点基本上都是高数、线代与概率论的知识点。一般统考不会超过课本知识,但是难度比课本习题难度大很多。一般可以参考每年的数学考研大纲。数学一考研数学内容:高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数。一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质四、线性方程组考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验二、随机变量及其分布考试内容:随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布四、随机变量的数字特征考试内容:随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质五、大数定律和中心极限定理考试内容:切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计八、假设检验考试内容:显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验扩展资料:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2.授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1.经济学门类的各一级学科。2.管理学门类中的工商管理、农林经济管理一级学科。3.授管理学学位的管理科学与工程一级学科。参考资料:百度百科——数学考研大纲

考研数学复习的分配时间

专诸
柏舟
楼主:课本一定要看啊!!!万便不离其宗~~~给你提供几个计划吧 是我去年考研期间收集的 呵呵 复习总天数:31(7月1日至31日)+30(8月)+31(9月)+30(10月)+31(11月)+30(12月1日至30日) =183天 复习任务:高等数学(上下册)60%,概率论30%,线性代数10% 英语单词及词组6178个和阅读24部英文名著80%,语法10%,练习10% 政治:10月份以后再说 专业课:10月份以后再说 复习计划: 7,8,9月 一,总揽:7月高等数学,8月1日至20日概率论,8月20日至30日线性代数,9月〈〈2000年考研数学复习指南〉〉 7,8,9月24篇名著及名著内单词,另外随时复习回顾大纲单词。 二,细则:1,数学三。 高等数学 7月 函数,极限,连续 4天 一元函数微分学 6天 一元函数积分学 6天 常微分方程 3天 多元函数微分学 2天 多元函数积分学 6天 无穷级数 4天 31天 截止日期8月5日 ———————————————— 概率论与数理统计初步 随机事件和概率 4天 随机变量及其概率分布 4天 二维随机变量及其概率分布 4天 随机变量的数学特征 3天 大数定理与中心极值定理 1天 数理统计初步 4天 20天 截止日期8月30日 ———————————————— 线性代数 8月20日至30日 行列式 1天 矩阵及其运算 2天 向量与线性方程组 3天 矩阵的特征值与特征向量 2天 二次型 2天 10天 截止日期9月15日 ———————————————— 两千年考研数学复习指南 9月 注:考虑到休息时间的使用,上述计划的完成的最后截止日期是10月15日 2,英语 阅读 每月8部 4天1部 到9月底共阅读24部 ———————————————— 单词及词组 每天210个单词或词组,并时时反复复习 到九月底共记6178个单词及词组,并能熟练运用。 作息安排:上午:8:30至11:30 数学三 中午:11:30至2:00 休息 下午:2:00至5:00 英语 其它时间 自由支配 星期天休息 要注意的几点: 一、坚持坚持再坚持,要想今天我一定要做完什么,做不完不睡觉。 二、专心,学习就是学习,不要一会干这一会干那,特别是看flash的时候。 三、集中,不要相信什么细水长流,就像背单词,你一天背50个,第二天再背50个,几天下来后边没记住,前边又忘了,你一天背200个,连背五天肯定记住很多。其他复习也一样,不要一天复习一章,而是一天复习一本。 四、不要用太厚的书,天天背着很累,干学习就是不见书变薄是很打击信心的事,非要用厚书可以拆成几本,一天一本有成就感 五、不要怕累,没有任何人是轻轻松松考上研的,不付出努力就是不行 六、别说郁闷,郁闷是偷懒不想干活的代词 七、别相信考研辅导班的什么宣传,说什么押题、猜题都是假的,你怎么说,我就是不去 八、不要跟别人比,人比人气死人,自己按部就班复习,不要被别人影响 九、上网、玩游戏能不玩就不玩,考上再说 [转载] 考研数学规划 课本+复习指导书+习题集+模拟题+真题= KO 数学是与专业课并列的最重要的科目,用时最长。一般总分高的学生数学分数都高,即数 学是提分的一门科目。只凭数学一门课,拉十到二十分是比较容易的,而十到二十分对于 考研是相当大的差距。学习数学的要点是: a. 注重基本概念、定理(就像练武时的扎马 步,一定要有非常扎实的基本功); b. 多动手做题(不能只看不动笔, 1 + 1 = 2 这 样简单的东西也要写出来)。 1. 我的考研之路 我数学复习是从大三下学期开始的,大致分六轮: 1) 3 月初开学—— 6 月 15 日 :看一章课本,做课后题和陈文登《复习指南》对应章 节(平均四天一章)。这一遍最仔细,也耗时最多。弄完之后基本掌握了各种题型的解法 和考研大纲的要求。这一轮完成后基本上数学考高分就有了信心,因为很多人连《复习指 南》的书还没看过呢。 2) 6 月 15 日 —— 8 月 11 日 :这段时间我把《复习指南》又做了一遍,同时把从上 一届学姐那里买的《数学大纲解析》做了一遍。这一轮完成后,虽然不能全部融会贯通, 但基本建立了数学的框架体系,考研数学的信心更足了。因为很多人《复习指南》第一遍 还没完呢。 3) 8 月 11 日 —— 10 月 1 日 :数学弄了两遍,基本题型已经能够解决了(《复习指 南》太熟了,看着就要吐)。这时感觉做的题不多,急切希望作些题练练手,提高自己的 计算能力。于是从图书馆借了本陈文登的《题型集粹》,做了一遍(平均 1 、 2 天一章 )。因为这段时间准备并参加了一个比赛,有些分神,所以进度较慢。 4) 10 月 1 日 —— 11 月 11 日 :把《复习指南》又做了一遍,主要目的是在很短时 间内,完全建立数学框架体系,达到融会贯通。因为有了前三轮的基础,所以这一轮完成 的比较顺利。但由于去外地参加那个比赛的答辩以及准备期末考试,进度依然不快。 5) 11 月 11 日 ——考前一周:基本没什么事了,全心全意备考。这段时间主要是做模 拟题和真题。把买来的李永乐《 400 题》连续做了两遍,又把十年真题做了一遍(留着去 年真题到考前一周做)。这时已经信心十足了。 6) 考前一周——考试:才发现时间有些紧了。迅速把《复习指南》扫了一遍,卡着时间 做了一下去年真题(不管好坏,千万别忘心里去),剩下一、两天把以前总结在本子上的 公式、解题方法看了一遍,感觉效果不错。 2. 参考捷径 本人是数学专业学生(今年考数一),对数学要求较高。比如我第一轮的复习 其实速度是比较快的,一般人难以做到(当然,数二、数三、数四内容少,努力学完全有 可能),有些也不必做到。下面是我和其他一些研友共同探讨出来的一条路,按照这条路 走完,正常的话,数学应该能拿 140 分左右。大家可以参考一下: 1) 3 月初开学——暑假前:课本、课后题、复习指导书(李永乐、陈文登、其他人的也 行。如果用陈的指南,现代部分做李的《现代辅导讲义》)做一遍。可以先把课本做完再 做复习指导书,也可以像我一样一章一章做过去,关键是做完就行(数一可以迟一些,但 不能超过放假后两周)。当然,此时会出现一种情况,就是刚刚做完一章,回头再看已经 忘了。不用担心,这是刚开始做题少的缘故,随着数学复习的深入,自然会有质的提高( 想看到整个森林,你要先一棵一棵的把树栽上)。目的:掌握各知识点和大纲基本要求。 2) 暑假放假—— 9 月 1 日开学:复习指导书再做一遍。目的:初步建立框架体系,更 深入的掌握各知识点。 3) 9 月 1 日 —— 11 月初:找本习题集做一遍。有时间再把复习指导书做一遍,时间 短的话看一遍课本也行。目的:提高计算能力,融会贯通。 4) 11 月初——考前一周:模拟题、真题(留一套)至少各做一遍。有时间把课本再扫一 遍。目的:和考研挂钩,探寻历年出题规律,提高考研分数。 5) 考前一周——考试:看总结的东西,做一套真题。目的:查漏补缺,保持良好状态, 迎接考试。 在每一遍之后都要有一个深刻的思考过程 ,看看这一遍下来与上一遍有什么不同,如果发 现了赶紧记下来,若没有什么变化,这一遍相当于白看。 3. 书评 1) 陈文登《复习指南》★★★:强烈推荐。此书将不少东西模式化,优点是条理清楚, 解题步骤明了,尤其是高数,相当经典。缺点是一些活的、新的题型没有跟上变化、及时 修订,尤其是线代,故认为线代复习不要看《复习指南》。总体来说此书相当不错。 2) 李永乐《复习全书》★★:一直有人把《复习指南》和李的《复习全书》做比较。普 遍看法是李的简单、陈的难。个人认为不能用简单、复杂来评判。李的书知识点划分的更 为精细,应用的方法更为基础,或者说是让人更容易想到,这一点在 400 题中体现的更为 明显。同时,由于太细,也就导致稍嫌繁琐。总体来说此书不错。 3) 李永乐《线性代数辅导讲义》★★★:强烈推荐。此书我没做过,但做过的人都说不 错,且刚好弥补陈《复习指南》的不足。优点是题型多而全,一些方法比较经典,归纳的 也不错。缺点是难度不够,而且过细。 4) 《考研数学大纲解析》:适合用作参考,不做也罢。上边有错误解法讲解,可以看一 下。和指导书不一样的地方以此书为准(如数理统计区间估计方、圆括号等)。 5) 陈文登《题型精粹》★★:推荐一下。目前同类型的习题书不多。相比较而言,还算 可以的。做完后基本能达到练手的目的。和复习指南思路相同,更难一些。总结了的 公式和技巧,但考研一般不考。 6) 李永乐《 400 题》★★★:强烈推荐。与陈的书风格不同,是一本创新性质的模拟题 。有一定难度。做完陈的复习指南,再做此书,效果相当不错。做此书重点不是看答了多 少分,而是看从每一套题中学会了什么,找到了哪些自己掌握不牢的知识点,这个时候发 现比考试时发现好的多,建议每一套后都要有一个深刻的总结过程。 7) 李永乐《历年试题解析》★★:推荐一下。主要是没发现更好的真题书。优点是有错 误解法,书比较厚,解析的还行。缺点是没有采纳各家之长而达到经典的地步,个别题解 析方法不全。选真题书要慎重,解析一定要详细,即选“厚”一点的。做真题一定要注意 在 03 年前后的题型变化,也就是 03 年及其以后的要重点研究(各科都是如此)。 作者的话:考研结束了。本人以较高的分数考上了理想的大学。在近一年的备考过程中, 不断有人问我:“考研有没有什么捷径?”(其实,不走弯路就是捷径)。“怎么复习才 能考上?”为了回答上面的问题,我总结了一些考研的方法与技巧,希望对在考研路上行 走的学弟、学妹们有所帮助。本文由五篇文章组合而成,写作目的是:尽我个人的最大努 力帮助愿继续深造的人才们少走弯路,顺利考上研究生。参考资料:http://..com/question/60548521.html?si=3不合理,数一考高等数学上下,线性代数,概率统计,其中的知识点很繁杂,除了把书看懂,还要做大量的习题,所以至少需要 半年的复习时间