欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学三真题

阮修
陌路人
您好!很高兴为您解答!考研数学三真题你可以关注下文都资讯网。考研数学的复习要理清重点难点疑点。 注重基础,找出联系,强化细节  要做到对知识点清晰分层,实际上不是一个简单的过程,考研数学历来以考试内容多、知识面广、综合性强。所以建议考生应当深刻理解考试大纲、深刻了解自己的基础情况。且不能仅想通过一些“解题技巧”成功,要清楚任何知识的积累都是长期努力的结果,都是需要我们踏踏实实来努力的,切勿投机。  学会做题、总结,善于归纳  对于数学复习本阶段最明显的作用是强化技巧,发现自己的薄弱环节。数学能力的提高,是建立在一定的题量上的,所以一定要做习题。但是,同样的做了很多题,有的人成绩迅猛提高,有的人却止步不前,原因就是方法和总结。因此,考生在日常复习过程中要善于梳理知识点,适当的进行习题训练,对于同类型的题目,考生要尽量完整地做,包括所需的公式,各步的计算,千万不能眼高手低,有时候一看题觉得自己会做就放弃演算过程,这是不好的习惯。只有每次在做题时善始善终,才能提高做题的准确程度,甚至发现自己的一些思维漏洞。希望能帮到你!http://wenku..com/search?word=2014++%BF%BC%D1%D0%CA%FD%D1%A7%C8%FD&lm=0&od=0&fr=top_home

考研数学三网上练习题做谁的?

果孰是邪
封面时穿的一件衣服作为拍品,以一元起拍,拍了出去.这时 ,光良唱起了大学生最喜欢听的一首《童话》.大家又再一次为大学生捐款,现场十分感人.我也留着泪 ,给节目组发短信,因为一条短信就代表着我的一片心意.最终,光良顺利地为这位大学生筹齐了医药费 .这时,现场又响起那熟悉的旋律. “……你要相信,相信我们会像童话故事里,幸福和快乐是结局.”-----------------------------让世界充满爱爱,无处不在.我在一份报纸上,看到了这样的一件事.

求考研数学三真题

古今不代
己独曲全
1、 李永乐考研数学3--数学复习全书+习题全解(经济类)2、 李永乐《经典400题》3、 《李永乐考研数学历年试题解析(数学三)真题》方案2 《基础过关660》李永乐。(做过三遍)  这本书很好,别看有基础二字你就觉得简单,所谓基础是说里面的题都是填空选择,他基本上穷尽了填空选择所有能见到的题型,做好了考研时填空选择不会出什么问题的。这本书我做了三遍,不过当然不是每一遍都是从头到尾做,一会我会告诉你怎么做。   《复习全书》李永乐(做过三遍)  关于复习全书和复习指南那本好的争论一直就没有停过,不过我觉得如果是数三,全书要胜过指南一筹,而且很多第一年用复习指南没考上,第二年换复习全书的人都会这么说,全书整体上要好一点。至于数一数二用哪本,我没经历过,也不敢妄下结论。 关于陈文灯的《复习指南》我在后期的时候简单选读过,这本书里面有两部分大家一定要看:分部积分的表格法和微分方程的算子法,太牛了,以至于我用过之后就爱不释手,哈哈!  《概率论与数理统计讲义》(基础篇) 姚孟臣 (做过两遍)  关于概率论的试题用书大家推荐过几本,我在图书大厦都翻阅过,强烈建议用这本,你用过后就知道了,它穷尽了你能见到的所有概率题型,相信做完后你的概率会有质的飞跃!这本书有个提高篇,千万别买哈,里面的东西考研都不考,基础篇才是真正的考研用书,呵呵!好了。。有不懂再问。。。我考的是金融专业、、也是数学三。。考140分是最低要求。。。

请问考研数学三要用什么复习资料好?

神者征之
彼故知之
你好,考研数学复习:  高数:同济大学应用数学系主编的《高等数学》(上、下册)(绿色封皮)  线性代数:同济大学应用数学系主编的《线性代数》(紫色封皮)  概率:浙江大学编的《概率论与数理统计》(蓝色封皮)  参考复习资料:李永乐,王式安复习全书,基础过关660,李永乐的那本超越135。  数学复习主要就是练习做题,我当时考是的数一,用的是李永乐的复习全书(现在没有二李的版本了,只有李永乐和王式安那一本,也不错),全书总共看了三遍(从一开始就要看了,和看教材同步),可以说每道题都研究过,知道涵盖的知识点和做法。还有对于练习来说,基础过关660是很不错的选择,里面的小题都很巧妙,可以当大题研究的。在练习到一定程度以后,我就开始做真题,真题反复做了很多遍(至少有6,7遍),反复归纳总结(真题非常重要)。最后就是冲刺阶段的李永乐的那本超越135,这个也很不错。数学最重要的就是要保持解题状态,懈怠三天,做题的水平就会退步。  数一和数三也没有本质的区别,你要是能做到上述说的,我估计130应该不难。非常谢谢你!另外市面上除了永乐和式安版本,还有李元正范培华版本,这本跟永乐式安版本有什么区别,那一本更好一点啊?用李永乐和王式安的比较多,你可以考虑用这本。两本的区别其实不大。谢谢你!不好意思,还忘了有人推荐用陈文灯那本,那这本认为如何呢,跟永乐有什么区别的呢?  我个人觉得李永乐的比较好。其实全书这东西也不会差很多,关键在于多看,我李永乐的书看了三遍,数一145分。所以我觉得复习材料的区别不是很大,差别还在于与努力。

求考研数学三历年真题?

多于之赢
道无不理
对于考研数学的复习,多数考生都是按照高数、线代、概率的顺序进行的,这就导致很多考生对概率的重视程度大大降低,复习时间较少,复习不到位,得分比较低,但是我们认真分析一下历年真题,就会发现概率题型比较固定,解法比较单一,计算技巧要求相对低一些。所以在复习过程中,李英男老师告诉大家如果能够把握住这门学科的考试特点,并且能够结合历年考试试题规律,认真备考,概率拿到满分还是比较容易的。下面结合这门学科的考试特点以及考试规律,给各位考生一些复习指导意见。▌一、仔细分析考试大纲,抓住重点考试大纲是最重要的备考资料,虽然2015年的考试大纲还没有出,不过从历年的数学大纲来看,每年基本上没有变化,所以大家可以先参考2014年考研数学大纲,将大纲中要求的内容仔细梳理一下,在复习过程中一定要明确重点,对于不太重要的内容,如古典概型,只要求掌握一些简单的概率计算即可,不需要在复杂的题目上投入太多精力。而对于概率的重点考查对象一定要重视,例如,随机变量函数的分布基本上每年都会以解答题的形式考查,其中离散型随机变量函数的分布是比较简单的,连续型随机变量函数的分布是考试频率最高的,也是较难的一类题目,在利用分布函数法求概率密度函数过程中,如何正确寻找分段点以及确定积分上下限是正确解决这类问题的关键,所以平时复习要加强这类题型的训练,一个离散型一个连续型随机变量函数的分布,求最大值、最小值函数的分布考频也是比较高的。另外,二维连续型随机变量的边缘分布、条件分布也是考试的重点,大家在复习过程中一定要深刻理解他们的定义和计算方法。随机变量的分布还经常与数字特征结合出题,所以数字特征也是概率的一大重点,但往往考生对于这部分知识掌握的不好,失分现象严重,所以要求大家复习时要灵活应用数字特征相应的计算公式及性质。数理统计中,参数估计的矩估计法和最大似然估计法及验证估计量的无偏性也是解答题中经常考查的知识点,大家复习过程中要特别重视。▌二、加强对基本概念、基本性质的理解从历年试题看,概率论与数理统计这部分内容主要考查考生对基本概念、原理的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,建立起正确的概率模型去解决概率问题。所以大家在复习过程中要准确理解概率论与数理统计中的基本概念,基本性质,为了深刻记忆,我们可以结合一些实际问题去理解,只要概念和公式理解准确到位,并且多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教科书中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求难题、技巧,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、理论和方法。▌三、重视真题的训练依法治国考点一定属于第二部分:毛中特吗?非也,有一个看似遥远,却更加密切的领域就是第四部分中的法律基础。尤其是“依宪治国”。本次会议提出全面推进依法治国的重大任务:完善以宪法为核心的中国特色社会主义法律体系,加强宪法实施;深入推进依法行政,加快建设法治政府;保证公正司法,提高司法公信力;增强全民法治观念,推进法治社会建设;加强法治工作队伍建设;加强和改进党对全面推进依法治国的领导……这些在《思想道德修养与法律基础》中有明确阐述。▌四、回顾知识点,进行适当的模拟训练最后冲刺阶段,需要回归教材,把课本再认真看一遍,查遗补漏,将知识条理化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不能做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到锻炼的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩。

考研数学三怎么去复习啊?

逆世界
花墙会
怎么说呢,我是英语专业跨考经济学,恰好是考数三,半年的时间最后分数不高也不低,110多,对我来说够用了,不知道你的目标是多少分。你要考14年的貌似有点难度,看你有多少时间来准备了哈。 最容易得分的是概率,争取全部拿到这些分,这部分你可以找个懂得人给你讲讲基本原理,这部分题型比较少,也比较容易拿分。其次,我觉得是高数了。这部分你得好好的把课本看看,网上有个叫蔡高厅教授的视频,有板书很详细,你跟着学习,还是要把课后习题做好,这是基础。然后陪着李永乐的复习全书,知道出题方向和考点。至于线性代数,还是书本最重要了,看看书,自己做做课后习题。这些内容都有网上的教学视频,你找个你比较适合的,你喜欢的风格的老师,跟着学习,再找个你同学或者朋友懂数学的,给你点拨。 反复做李永乐的书。题大部分能做出来也差不多了。最重要的还是要保持客观的心态,其实数三不难,只要把基础题和中等难度的题,保证不丢分120是很容易的。 有多余的时间,陪着一些培训学校的老师的视频,有助于你提高效率。当年我时间有限,只看了部分,并没有完全看完,主要是还是看课本的教学视频和永乐全书了。 保持良好的心态很重要。 希望这些对你有帮助,最后祝你考研成功哈~~有问题可以问我~

请各位高手帮个忙,如何在三个月内复习考研数学三?

草木怒生
麋鹿食荐
你比我强多了,我数学复习3个月的时候,660题,做10道错8道,还有1道不会。现在数学也差不多能125分左右。原因是我掌握了教材的基础知识以后,做了若干套真题,培养做题的感觉,顺便也能综合练习那些分散的基础知识,强化他们。660题的确比较难,特别是高数部分,都是死扣概念的,题目太细致了,这个做不好不要担心。建议先研究真题。先把真题成套的做一遍,限时,核对答案得出分数,分析错题原因,是因为基础不牢固,还是发挥问题。做几套题感觉就上来了。

考研数学三只做真题能考到100分左右吗?去年分数线是八十…只做真题能过线吗?书已经看过了…

华容道
犹来
1。先对照着考试大纲复习课本,抓基础2。买复习全书,如陈文灯,李永乐,高教。。。3。做题,练习题和真题关键是抓基础,祝你好运只做真题估计有点难度的。最好还是把重要的知识点都掌握,多联系!而且要想考个好的研究生,只考100分成绩有点低!

我是大三准备考研的学生,请问数学一包括什么 ??

埃德加
葛屦
说明:2011考研数学一大纲无变化,下面是2010年考研数学一大纲供广大学员备考参考。考试科目:高等数学、线性代数、概率论与数理统计一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学56% 线性代数 22% 概率论与数理统计 22%四、试卷题型结构单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容  向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容  二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容  常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在 上的傅里叶级数 函数在 上的正弦级数和余弦级数考试要求  1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.  2.掌握几何级数与 级数的收敛与发散的条件.  3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.  4.掌握交错级数的莱布尼茨判别法.  5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.  6.了解函数项级数的收敛域及和函数的概念.  7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.  8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.  9.了解函数展开为泰勒级数的充分必要条件.  10.掌握 , , , 及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线 性 代 数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.  4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容  向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求  1.理解 维向量、向量的线性组合与线性表示的概念.   2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.   3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.  5.了解 维向量空间、子空间、基底、维数、坐标等概念.  6.了解基变换和坐标变换公式,会求过渡矩阵.  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容  矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布考试内容  随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数 的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为 5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容  多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求  1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.   2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.  3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容  随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求  1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容  切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理 考试要求  1.了解切比雪夫不等式.  2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为: 2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.