欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

学霸进,考研数学怎么学?我基础很差

罗光
惠施之才
考研数学应该怎么学?才能更高效提高分

考研数学怎么才能打好基础

大馆奴
复往邀之
首先,考研数学想要考copy高分,得打好基础。考研数学23道题目,70%的题目都是基础题,包括基本概念、基本理论和基本方法。这一阶段通过汤老师的2017《考研数学复习大全·数学一》来全面系统复习,另外,数学还是少不了做题的,用《考研数学接力题典1800》来强化提高;其次,要掌握方法技巧,重视归纳总结,不能单纯只做题目,在做完题目之后,一定要明白其解题思路,对于解题过程中所用到的方法、技巧要进行归纳总结,可以《用考研数学客观题简化求解》和《考研数学常考题型解题方法技巧归纳》来重点总结下方法;此外自然少不了真题了,吃透真题很重要,建议你把2017《考研数学15年真题解析与方法指导》做两遍以上,总结其中的考试规律,总结自己复习的失误经验。到了冲刺阶段,保持好的题感,用汤神的2017《考研数学绝对考场最后八套题》冲刺提高是非常好的。

考研数学复习的分配时间

田骈亦然
何其下邪
楼主:课本一定要看啊!!!万便不离其宗~~~给你提供几个计划吧 是我去年考研期间收集的 呵呵 复习总天数:31(7月1日至31日)+30(8月)+31(9月)+30(10月)+31(11月)+30(12月1日至30日) =183天 复习任务:高等数学(上下册)60%,概率论30%,线性代数10% 英语单词及词组6178个和阅读24部英文名著80%,语法10%,练习10% 政治:10月份以后再说 专业课:10月份以后再说 复习计划: 7,8,9月 一,总揽:7月高等数学,8月1日至20日概率论,8月20日至30日线性代数,9月〈〈2000年考研数学复习指南〉〉 7,8,9月24篇名著及名著内单词,另外随时复习回顾大纲单词。 二,细则:1,数学三。 高等数学 7月 函数,极限,连续 4天 一元函数微分学 6天 一元函数积分学 6天 常微分方程 3天 多元函数微分学 2天 多元函数积分学 6天 无穷级数 4天 31天 截止日期8月5日 ———————————————— 概率论与数理统计初步 随机事件和概率 4天 随机变量及其概率分布 4天 二维随机变量及其概率分布 4天 随机变量的数学特征 3天 大数定理与中心极值定理 1天 数理统计初步 4天 20天 截止日期8月30日 ———————————————— 线性代数 8月20日至30日 行列式 1天 矩阵及其运算 2天 向量与线性方程组 3天 矩阵的特征值与特征向量 2天 二次型 2天 10天 截止日期9月15日 ———————————————— 两千年考研数学复习指南 9月 注:考虑到休息时间的使用,上述计划的完成的最后截止日期是10月15日 2,英语 阅读 每月8部 4天1部 到9月底共阅读24部 ———————————————— 单词及词组 每天210个单词或词组,并时时反复复习 到九月底共记6178个单词及词组,并能熟练运用。 作息安排:上午:8:30至11:30 数学三 中午:11:30至2:00 休息 下午:2:00至5:00 英语 其它时间 自由支配 星期天休息 要注意的几点: 一、坚持坚持再坚持,要想今天我一定要做完什么,做不完不睡觉。 二、专心,学习就是学习,不要一会干这一会干那,特别是看flash的时候。 三、集中,不要相信什么细水长流,就像背单词,你一天背50个,第二天再背50个,几天下来后边没记住,前边又忘了,你一天背200个,连背五天肯定记住很多。其他复习也一样,不要一天复习一章,而是一天复习一本。 四、不要用太厚的书,天天背着很累,干学习就是不见书变薄是很打击信心的事,非要用厚书可以拆成几本,一天一本有成就感 五、不要怕累,没有任何人是轻轻松松考上研的,不付出努力就是不行 六、别说郁闷,郁闷是偷懒不想干活的代词 七、别相信考研辅导班的什么宣传,说什么押题、猜题都是假的,你怎么说,我就是不去 八、不要跟别人比,人比人气死人,自己按部就班复习,不要被别人影响 九、上网、玩游戏能不玩就不玩,考上再说 [转载] 考研数学规划 课本+复习指导书+习题集+模拟题+真题= KO 数学是与专业课并列的最重要的科目,用时最长。一般总分高的学生数学分数都高,即数 学是提分的一门科目。只凭数学一门课,拉十到二十分是比较容易的,而十到二十分对于 考研是相当大的差距。学习数学的要点是: a. 注重基本概念、定理(就像练武时的扎马 步,一定要有非常扎实的基本功); b. 多动手做题(不能只看不动笔, 1 + 1 = 2 这 样简单的东西也要写出来)。 1. 我的考研之路 我数学复习是从大三下学期开始的,大致分六轮: 1) 3 月初开学—— 6 月 15 日 :看一章课本,做课后题和陈文登《复习指南》对应章 节(平均四天一章)。这一遍最仔细,也耗时最多。弄完之后基本掌握了各种题型的解法 和考研大纲的要求。这一轮完成后基本上数学考高分就有了信心,因为很多人连《复习指 南》的书还没看过呢。 2) 6 月 15 日 —— 8 月 11 日 :这段时间我把《复习指南》又做了一遍,同时把从上 一届学姐那里买的《数学大纲解析》做了一遍。这一轮完成后,虽然不能全部融会贯通, 但基本建立了数学的框架体系,考研数学的信心更足了。因为很多人《复习指南》第一遍 还没完呢。 3) 8 月 11 日 —— 10 月 1 日 :数学弄了两遍,基本题型已经能够解决了(《复习指 南》太熟了,看着就要吐)。这时感觉做的题不多,急切希望作些题练练手,提高自己的 计算能力。于是从图书馆借了本陈文登的《题型集粹》,做了一遍(平均 1 、 2 天一章 )。因为这段时间准备并参加了一个比赛,有些分神,所以进度较慢。 4) 10 月 1 日 —— 11 月 11 日 :把《复习指南》又做了一遍,主要目的是在很短时 间内,完全建立数学框架体系,达到融会贯通。因为有了前三轮的基础,所以这一轮完成 的比较顺利。但由于去外地参加那个比赛的答辩以及准备期末考试,进度依然不快。 5) 11 月 11 日 ——考前一周:基本没什么事了,全心全意备考。这段时间主要是做模 拟题和真题。把买来的李永乐《 400 题》连续做了两遍,又把十年真题做了一遍(留着去 年真题到考前一周做)。这时已经信心十足了。 6) 考前一周——考试:才发现时间有些紧了。迅速把《复习指南》扫了一遍,卡着时间 做了一下去年真题(不管好坏,千万别忘心里去),剩下一、两天把以前总结在本子上的 公式、解题方法看了一遍,感觉效果不错。 2. 参考捷径 本人是数学专业学生(今年考数一),对数学要求较高。比如我第一轮的复习 其实速度是比较快的,一般人难以做到(当然,数二、数三、数四内容少,努力学完全有 可能),有些也不必做到。下面是我和其他一些研友共同探讨出来的一条路,按照这条路 走完,正常的话,数学应该能拿 140 分左右。大家可以参考一下: 1) 3 月初开学——暑假前:课本、课后题、复习指导书(李永乐、陈文登、其他人的也 行。如果用陈的指南,现代部分做李的《现代辅导讲义》)做一遍。可以先把课本做完再 做复习指导书,也可以像我一样一章一章做过去,关键是做完就行(数一可以迟一些,但 不能超过放假后两周)。当然,此时会出现一种情况,就是刚刚做完一章,回头再看已经 忘了。不用担心,这是刚开始做题少的缘故,随着数学复习的深入,自然会有质的提高( 想看到整个森林,你要先一棵一棵的把树栽上)。目的:掌握各知识点和大纲基本要求。 2) 暑假放假—— 9 月 1 日开学:复习指导书再做一遍。目的:初步建立框架体系,更 深入的掌握各知识点。 3) 9 月 1 日 —— 11 月初:找本习题集做一遍。有时间再把复习指导书做一遍,时间 短的话看一遍课本也行。目的:提高计算能力,融会贯通。 4) 11 月初——考前一周:模拟题、真题(留一套)至少各做一遍。有时间把课本再扫一 遍。目的:和考研挂钩,探寻历年出题规律,提高考研分数。 5) 考前一周——考试:看总结的东西,做一套真题。目的:查漏补缺,保持良好状态, 迎接考试。 在每一遍之后都要有一个深刻的思考过程 ,看看这一遍下来与上一遍有什么不同,如果发 现了赶紧记下来,若没有什么变化,这一遍相当于白看。 3. 书评 1) 陈文登《复习指南》★★★:强烈推荐。此书将不少东西模式化,优点是条理清楚, 解题步骤明了,尤其是高数,相当经典。缺点是一些活的、新的题型没有跟上变化、及时 修订,尤其是线代,故认为线代复习不要看《复习指南》。总体来说此书相当不错。 2) 李永乐《复习全书》★★:一直有人把《复习指南》和李的《复习全书》做比较。普 遍看法是李的简单、陈的难。个人认为不能用简单、复杂来评判。李的书知识点划分的更 为精细,应用的方法更为基础,或者说是让人更容易想到,这一点在 400 题中体现的更为 明显。同时,由于太细,也就导致稍嫌繁琐。总体来说此书不错。 3) 李永乐《线性代数辅导讲义》★★★:强烈推荐。此书我没做过,但做过的人都说不 错,且刚好弥补陈《复习指南》的不足。优点是题型多而全,一些方法比较经典,归纳的 也不错。缺点是难度不够,而且过细。 4) 《考研数学大纲解析》:适合用作参考,不做也罢。上边有错误解法讲解,可以看一 下。和指导书不一样的地方以此书为准(如数理统计区间估计方、圆括号等)。 5) 陈文登《题型精粹》★★:推荐一下。目前同类型的习题书不多。相比较而言,还算 可以的。做完后基本能达到练手的目的。和复习指南思路相同,更难一些。总结了的 公式和技巧,但考研一般不考。 6) 李永乐《 400 题》★★★:强烈推荐。与陈的书风格不同,是一本创新性质的模拟题 。有一定难度。做完陈的复习指南,再做此书,效果相当不错。做此书重点不是看答了多 少分,而是看从每一套题中学会了什么,找到了哪些自己掌握不牢的知识点,这个时候发 现比考试时发现好的多,建议每一套后都要有一个深刻的总结过程。 7) 李永乐《历年试题解析》★★:推荐一下。主要是没发现更好的真题书。优点是有错 误解法,书比较厚,解析的还行。缺点是没有采纳各家之长而达到经典的地步,个别题解 析方法不全。选真题书要慎重,解析一定要详细,即选“厚”一点的。做真题一定要注意 在 03 年前后的题型变化,也就是 03 年及其以后的要重点研究(各科都是如此)。 作者的话:考研结束了。本人以较高的分数考上了理想的大学。在近一年的备考过程中, 不断有人问我:“考研有没有什么捷径?”(其实,不走弯路就是捷径)。“怎么复习才 能考上?”为了回答上面的问题,我总结了一些考研的方法与技巧,希望对在考研路上行 走的学弟、学妹们有所帮助。本文由五篇文章组合而成,写作目的是:尽我个人的最大努 力帮助愿继续深造的人才们少走弯路,顺利考上研究生。参考资料:http://..com/question/60548521.html?si=3不合理,数一考高等数学上下,线性代数,概率统计,其中的知识点很繁杂,除了把书看懂,还要做大量的习题,所以至少需要 半年的复习时间

考研数学该怎么学习,我之前一点基础也没有,能学会么

鬼蟑螂
然乎
对于很多同学来说,数学是相当难的,我周围的很多同学常常跟我说不知道考数学怎么复习3363376466,因为太多了太难了。开始我也是不知所措,后来我想必须有个计划才行。于是我首先给自己定下了一个目标,130分,对于我所报考的院校来说,这个分数说高并不高,因为之前我看过很多论坛的贴子,以前就有很多因为差一两分而被拒门外的。有了目标得有完整细致的计划才可以,我的自主性比较差,完全不适合随意的学习,如果没有计划或者任务去完成,我可能会一天两天甚至一周都静不下心来学习;但一旦计划制定了,我会完全按照执行,如果在自己规定的时间内完成既定学习目标,常常能使自己有成就感,也常常会增加学习的动力。所以对于自主性差的同学,建议跟我一样制定一个好的周到的考研数学复习计划,然后逼迫自己为了考研伟业努力依计划执行。我的计划也不完全是自己制定的,刚开始复习肯定不知道数学考什么,怎么考。我也是查阅了很多资料,也咨询过很多师兄师姐,后来我让在中公考研工作的哥哥找他们研究数学的同事帮我做了一下计划,然后我在这个基础上根据自己的情况稍微做了点调整。大家也可以做参考。其实考研数学复习具有基础性和长期性的特点,是一项复杂的系统性工程,我们得充分了解把握考试的要求和我们自身的学习规律,合理分配复习时间,分解复习目标,规划复习内容,我想这样才可以出奇制胜,如果我们能够坚持下来,数学肯定没有问题。 我们得首先知道考研数学学习阶梯划分是怎么样的:1. 基础阶段 夯实基础(6月以前)2. 强化阶段 熟悉题型(7月-9月)3. 提高阶段 综合提高(10月-11月)4. 模考阶段 考前模拟(12月-考试前) 其次是参考书目:1.数学考试大纲2.《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。3.《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生4.《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。5.历年真题6.常用辅导书:综合类辅导全书、习题集、模拟题 具体的考研数学复习规划:1、基础阶段 夯实基础(6月以前)学习目标:根据考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基 —— 基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。2、强化阶段 熟悉题型(7月-9月)学习目标:深入理解并灵活运用基本知识点,全面构建理论知识体系,熟悉考试的基本命题方向,熟练掌握常用的解题方法。复习建议:大家本阶段首先要对基础知识的做两个方面的提升,一是针对考试的要求进行必要的深入和细化;二是系统化的梳理,建立起总体的知识框架。除此之外,还需要总结考研数学各科命题方向、归纳基本题型、提炼核心的解题方法及思路,将基础阶段所学基本知识转化为解题能力。上述两点正是我们强化阶段课程的主要内容,除了课程内容之外,对大家来说,更关键的是按照课程的指导进行针对性的练习,这个阶段练习的质和量都同等重要。只有通过大量的做题,才能真正掌握核心的思想方法,为后续进一步提高做好准备。3、提高阶段 综合提高(10月-11月)学习目标:知识点串讲,梳理知识体系,针对核心题型及重难点精讲精练,重点提升大家综合解题能力。复习建议:这个阶段考试主要完成三件事:一是系统梳理知识体系,将强化阶段老师所讲的知识框架按照自己的理解还原出来,系统地把握主要考点;二是真题练习,对历年真题按照考点题型进行分类练习,归纳总结命题方向与规律,同时查找自己的知识水平与考试要求的差距,针对性补强;三是错题整理,将前一个阶段的错题整理规律、重复练习,扫清知识体系中的盲点和丢分点。4、模考阶段 考前模拟(12月-考试前)学习目标:应考技巧训练,保持状态复习建议: 结合近十年真题和难度适中模拟题按照考试要求进行模考,保持做题手感,积累考场经验,同时通过对考试结果的分析查漏补缺,为冲击高分做最后的努力。 以下是建议的学习时间:每年硕士研究生入学数学考试的时间一般都安排在上午,故建议大家将数学的复习时间安排在每天早上9:00-12:00(可根据自身情况适当调整,但此时效果最好)

2021考研数学基础阶段怎么安排复习?

良耜
数学一:高数56%、线性代数22%、概率统计22%。数学二:高数78%、线性代数22%、不考概回率统计。数学答三:高数56%、线性代数22%、概率统计22%。现在这个阶段,还是要看同济大学和浙大经典版本教材的,把书学一遍,再把课后题做一遍,把基础打牢固,便于后期提高和冲刺,数学150分,是最能和其他考生拉开分差的一个学科

大学数学思想方法学习心得

乙叶
古之有也
下面是我整理的一些自己学习数学的经验,在必要的时候我会结合具体例子来谈,希望不会让人觉得枯燥。 提到推荐用书,除了经典的两个方案,其实还有一套:《大学数学——概念、方法与技巧》,上册为高等数学部分,下册为线性代数与概率统计部分。清华大学出的,非常不错,我在图书馆借到过,但不能确定现在是否还在。个人觉得这套书,或者灯哥的,或者二李的,三选其一就足够了。 考研数学主要考查:基本概念、运算能力、综合分析的思维方法。而我们平时的学期考试基本只涉及前两部分。 先讲基本概念。 在接触辅导书之前最好先过一遍教材,以便大致有个了解,最好结合考纲,这样有针对性。06年的大纲要暑假时才出,先借05年的来看吧,数学不像政治那样一年一变,九成以上的东西是不会变的。同济版《高等数学》、浙大版《概率论与数理统计》大家应该都有,至于线代,我们本科学习时用的线代教材是同济版《线性代数》,但不推荐,因为这本书过于抽象干涩,建议用北大版《高等代数》(上册)代替。看教材时,所有定理的证明都可以跳过,比如第一章极限,看上去就让人头晕的“ε—δ”语言是数学系的同仁作的工作,不用管它,你只需要看到一个初等函数后会用“代入法”求其在某一点的极限就可以了,书上有很多东西写得很详细,看的时候要抓主要矛盾,有所取舍,具体说起来就是着重考纲中要求为“理解”和“掌握”的部分。但因为了解过程也有助于记忆结论,所以如果时间允许,也可以大致了解一下重要定理的证明思路。不管看不看过程,最终的目的只有一个:记得公式和定理。不同于高考,考研数学要求记忆的知识点非常多,所以必须要像学习英语单词那样时常回忆,加深印象。 记得知识点以后要做什么?自然是用于解题。这时候就出现了一个值得注意的问题,那就是定理和公式成立的条件,还是拿上面这个例子来说,函数能够代入某点的取值来求极限的条件是什么?那就是这个函数是连续函数,虽然说我们碰到的大部分函数都是连续的,但最好还是不要想当然。类似的例子还有很多,而且就我个人的经验以及和以前一起复习的同学交流的情况来看,很多人容易忽视这个环节。连续函数的若干性质,如最大值最小值定理、零点定理等,都是指的闭区间上连续函数的性质;中值定理那一章节里,很多定理成立的条件都是所给函数在闭区间上连续、开区间上可导;应用得非常多的格林公式和高斯公式成立的条件是对应的闭合曲线或闭合曲面所包围的区域内不含奇点,在所求积分区域不闭合时要用补线或补面的方法,当有奇点时要想办法把单连通区域转化成多连通区域,使得对应的多连通区域不含奇点后才能应用相应的定理。强烈建议大家在复习过程中自己多总结,总的来说,记得知识点不是难事,但是一定要注意同时把某一知识点对应的适用条件也掌握好!只有同时把这两方面把握住了,概念这一块才算过关,才算打好了基础。 接下来是运算能力。 这里所说的运算能力包括速度和准确率两个方面,我以前在高中的时候就吃过这方面的亏,一张数学卷子发下来,题目都会做,都有思路,但是一做起来就漏洞百出,总有地方出错,结果时间自然不够。归根结底就是因为自己平时从来不练,看到一道题,先想思路,如果方法上没有什么障碍的话就认为不会有问题了,其实事实上如果真的动手去做很可能发现并非想象那么简单。进大学以后我就时常注意在学习的同时多练习,因为我是着手准备考研比较早的,所以时间上比较充裕,光高等数学部分来说大概做了约6000道习题,线性代数和概率统计没有这么多,基本就是书后习题加陈文灯复习指导的书后题目,毕竟高数是最占分量的部分。我的建议是:书后习题不用全做,因为拿高数书来说,每章后边的习题都是分大题小题的,一道大题可能有若干小题,那么这些小题基本算上同一类的,有选择性的做就可以了,注意把不同类型的题目都涉及到就差不多了,然后是陈文灯或者其它复习参考书后的习题。下面总结了一些我个人觉得比较重要的运算方面的内容:求极限、求导数、求高阶导数、求不定积分、求向量的点积和叉积、复合函数求导的链式法则、行列式或矩阵的初等变换、矩阵的乘法,基本上就这些吧,一定要练到熟得不能再熟,基本不出错的地步。运算速度到后期显得比较重要,因为冲刺阶段都是要整张卷子的做,这时不仅要分配好各部分题目的时间,而且要确保能在预计的时间里完成相应的任务,否则会对个人的情绪产生影响,考研数学九道大题,至少应该留两个小时来做,我个人觉得比较好的时间分配是:选填题45分钟,解答题2小时。 最后是综合分析的思维方法。 由于考研数学的知识点涉及面很广,而一张卷子能考查的覆盖面是有限的,那很自然会在综合要求上有所提高,试想一道仅涉及求导数的题目和一道把求导、极值和空间解析几何结合起来的题目哪个更容易作为考题?举个例子,陈文灯的临考演习里有一道题目是在椭球面上找一点,使过该点的切面与三坐标面所夹的几何体体积最大,这就是一道很好的综合题目。再比如,作为联系重积分和曲线(曲面)积分的桥梁,格林公式、高斯公式或斯托克斯公式几乎是每年必挑一个来考,原因很简单,这样子一道题目就可以覆盖两大块知识点,对命题人来说这是最好不过的了。 还有一些数学上的思想方法:分类讨论、数形结合、微元分析等。因为高等数学里面函数的地位是很重的,所以很有必要熟悉一些常用函数的性态,在涉及到此的时候最好能数形结合,便于分析,而且不要仅限于直角坐标的,极坐标下某些曲线的图形也应该掌握,比如星形线、对数螺线等,如果把对象扩大到空间坐标系,那还有各种旋转面、柱面、锥面等,要会写它们的柱坐标或者球坐标方程,这在求重积分的时候是重要的解题手段。在涉及到利用对称性时,数形结合有助于分析。至于分类讨论,线性代数用得比较多,尤其是在涉及线性方程组的题目时,对于未知参数常常需讨论取值。微元分析可谓是大学数学里最重要的思维方法了,不仅数学要用到,很多后续课程都要用到,具体的思路大家可以参考定积分的应用部分,书上也有很多具体例子,就不详细解释了,因为它实在是太有用了,所以我个人觉得必须熟练掌握。还有一些数学上的思想方法:分类讨论、数形结合、微元分析等。因为高等数学里面函数的地位是很重的,所以很有必要熟悉一些常用函数的性态,在涉及到此的时候最好能数形结合,便于分析,而且不要仅限于直角坐标的,极坐标下某些曲线的图形也应该掌握,比如星形线、对数螺线等,如果把对象扩大到空间坐标系,那还有各种旋转面、柱面、锥面等,要会写它们的柱坐标或者球坐标方程,这在求重积分的时候是重要的解题手段。在涉及到利用对称性时,数形结合有助于分析。至于分类讨论,线性代数用得比较多,尤其是在涉及线性方程组的题目时,对于未知参数常常需讨论取值。微元分析可谓是大学数学里最重要的思维方法了,不仅数学要用到,很多后续课程都要用到,具体的思路大家可以参考定积分的应用部分,书上也有很多具体例子,就不详细解释了,因为它实在是太有用了,所以我个人觉得必须熟练掌握。考研里的应用题就是一个从实际问题到数学模型的建模过程,然后再对这个数学模型求解,那么如何建立?一般就都是用微元法分析了,比如求面积、体积、弧长、变力作功、流量等等等等,从根本上来说都是相通的。有时还会结合极值问题,分一元函数和多元函数的极值两部分,多元函数有有条件极值和非条件极值,我做过一道模拟题,觉得出得相当的好,是先给一个随机变量,要求其参数的估计值,首先要求无偏,实际上这就给出了一个限制条件,然后要求最优,这时就成为了一个多元极值问题且是条件极值,这道题目把概率论和高数的内容串了起来,其实在复习的过程中见到此类综合题可以有意识的记下来,时常翻阅,体会出题者的心思。 说了那么多,都是在说哪些是重要的,哪些是要掌握的,那么自然就有与之相对应的一些部分,这些部分我称为“边缘内容”,这些内容基本上是隔几年来才出一道选择题或者填空题,大题是肯定不会涉及的。我自己总结如下:渐近线、3阶及以上的高阶导数、旋转曲面的面积、傅立叶级数、二元函数的泰勒公式、欧拉方程、范德蒙行列式、二维正态分布、大数定理、中心极限定理、契比雪夫不等式、区间估计、假设检验,正如考纲上写的,这些东西了解就可以了。至于空间解析几何部分和不等式两块内容,考研一般不会正面涉及,一般是要求将其作为工具掌握,也就是作为其它题目中的一个部分来考查,没见到过大题专门出过空间解析几何(如求公垂线方程)和证明不等式的。还是那句话,因为内容多,为避免烦躁情绪过早出现,在第一遍复习时应该先集中精力突破重要的和占分点多的部分,之后再来解决边缘内容,而且面对它们时大可不必有压力。 剩下就是一些易混淆点了,比如在单变量函数时,可导必能推出连续并且可导和可微等价,但在多变量函数时就算偏导数都存在也不一定可微,条件加强为偏导数连续。线性代数里面的几个概念,等价(与相抵说法同)、相似、合同之间相互有无关系?比如等价是否一定相似,相似是否一定合同,反过来呢?这些一定要搞清楚,不能一知半解。我说过最好要掌握原理,而不需要强记,个人觉得这两者是结合起来的吧,能掌握原理的就掌握原理,实在不能在短时间内掌握再强记。前边提到了公式和定理,其实基本概念里还有一个内容:定义。我学习的过程中就是把定义作为掌握原理的出发点的,拿上面的例子来说,何谓等价?何谓相似?何谓合同?把这些说法用数学语言严格的表示出来就是定义,然后再分析相互之间有甚联系。考研数学中会出现一些考察说法的选择题,这类题就是专捡那些易混淆部分来考的,无孔不入,大家可以翻翻历年真题看看。 最后我结合05年真题,也就是自己在考场上做过的这张卷子,谈谈自己对今年试题的看法。题目就不写了,可以对照原题来看,现在应该都出了,就说说对其考查知识点的看法吧。总的来说,今年的数学一真题再次验证了“考研注重基础”的说法,没有偏题怪题,我此前提过一个“1:2:7”的说法,1为难题、2为简单题、7为中等题,这几年考题的结构差不多是按这个比例来的。 填空第一道求渐近线,03年有傅立叶级数,04年有欧拉方程,边缘内容一般就是一道小题,渐近线容易求,但是别被迷惑,此题给的函数有两条渐近线,而要求的是斜渐近线,当然后来听说也有人两条都写了上去,总之看题还是仔细些吧。第二题求解微分方程,等式两边变形为一阶线形微分方程,不过非齐次的要用常数变易法,注意运算不要出错即可。第三道求方向导数,这里提一下,多元积分那部分出现了很多概念,如方向导数、梯度、通量、散度、环流量、旋度,要搞清楚它们的相互关系,方向导数和梯度,通量和散度,环流量和旋度,方向导数是一个数,而梯度是一个向量,此题先求梯度再得方向导数。第四题是高斯公式的直接应用,直接根据已给方程确定积分区域,注意区域是否封闭,还有必须是外侧,内侧就要在整个结果前添负号,这些都是细节,如果题目中稍有变化,如果不注意就要吃亏了。第五题求行列式,由于是抽象行列式,必须利用好已知量和待求量之间的关系,这就是前边说要熟练掌握行列式的初等变换的原因,如果利用矩阵的形式来写出它们的关系则更一目了然,再利用"乘积的行列式等于行列式的乘积"就好解决得多了,所以说考研题一般不会单单局限于一个知识点,通常都是跨章节的。最后一题求某概型的概率,先分类讨论,再用全概率公式求得。 选择第一道也是要分类讨论,根据自变量不同的取值范围得出对应区间上的函数表达式,然后在判断可导或不可导点,类似的题目在高数课后练习上就有了的,但我居然选错了,令我事后郁闷不已,所以在考场上保持高度精神集中是很必要的,这需要大量的模拟冲刺练习来支撑。第二道是上面提到过的说法题,如果记得这个结论是可以直接选的,但大多人不会记得这么清楚,一般只能很快排除后两项,那么A、B到底哪个对?别忘了原函数求出来是带任意积分常数C的,而奇函数是要求过原点的,这样由于B选项中常数的任意取值不能确保原函数一定过原点,所以不一定为奇函数,这样就排除了强干扰项。第三道要求二阶偏导数,由于是复合函数,计算需万分小心,只要不出错就能顺着得出答案。第四道是05年新增考点,隐函数存在定理,这里要提的就是,每年的新增考点一般都必考,所幸数学一般每年变化也就在一两个知识点,等今年考纲出来注意一下就行了。第五题是线代里特征值和特征向量的问题,注意不同的特征值对应的特征向量一定线性无关,把这个结论用起来就好办了,剩下就是一类典型题,由已知一组向量线性无关推导另一组向量线性无关,且两组向量间有一定关系,这样的练习在书上随处可见。第六道涉及矩阵的初等变换,其实在初等变换一章讲过将一个矩阵进行初等变换相当于乘以一个对应的初等矩阵,把题目中的说法都翻译成数学语言,剩下的就是数学上的变换了。第七题考了二维随机变量,实际上充分利用好其若干性质就可以了,就是注意把独立性用进来。最后一题是数理统计里的常用的抽样分布及其变形,如果记得就非常简单,把选项一个一个拿来对应分析就可以了,出题人真是用心险恶,把正确项设在最后一个……当然如果一眼能看出对的来就不用再算别的了,概率论与数理统计教材第六章提到的几个抽样分布很难记,容易混淆和忘记,只能靠多看来加强记忆了。 然后是解答题。 第一道求两重积分,但涉及面并不单一,被积函数需要根据积分区域进行拆分,其实就是一个分类讨论的思想,关键是一上来千万别被那个取整函数吓到,冷静分析后就发现其实不难,就形式上陌生一些而已。 第二道是先求收敛域再求和函数,前一部分简单,难在后一部分,求和函数时要用两次逐项积分求导的方法,计算计较烦,而且要求积分的功底比较好,否则就算知道怎么做也不一定能顺利完成。顺便提一下吧,五个常用函数的级数展开式一定要烂熟于心,等比级数、指数函数、两个三角函数和二项展开式,而且不要忘了对应的收敛域。 第三道可以算是应用题,简单,直接用牛——莱公式,分布积分得结果。 第四道是中值定理方面的证明题,这类题最有效的办法就是用“原函数法”,即先令要求证的等式为一个新的函数,想办法找出这个新的函数的原函数,看其是否满足某些中值定理的条件(一般都满足),然后就是顺利成章的应用定理了。突破点在于构造出合适的函数,这方面也要求平时复习时注意积累。还有就是分两问或者三问的题目,注意把前一问的结论用起来,后一问的难度就下降了。 第五道是我个人觉得整张卷子最难的一道题,我丢分基本就丢在这道吧,相关知识点是格林公式、微分方程。第一问证明结论,如果看过(大致记得)格林公式的证明过程的话,就会比较有头绪,采取补封闭曲线的方法就可以得到结论,注意曲线方向的协调一致。然后利用格林公式得到一个微分方程,求解即可,但求解过程很烦,我最后是通过观察法把未知函数先看出来的,然后在拼凑上去,估计失分就在这里吧。 接下来是线性代数的两道题,第一道涉及的知识点多,从特征值到二次型,但非常简单,计算也不是很烦,唯一要注意的就是特征向量求出后别忘了单位化,其它没什么好说的。第二道题出得很新颖,这是我唯一在考前没有见过的题型,还是利用分类讨论的思想,把未知参数的取值讨论一下,因为矩阵的秩有所不同的话,线性方程组的解的形式也随之不同,如果知道这个常用结论:如果AB=0,则r(A)+r(B)<=n,这个题目难度就去了一大半,接下来只要讨论里不要遗漏就可以了。所以说,常总结一些虽然不是书上的直接定理,但是很有用的结论是有必要的,因为其实就像上边这个结论,也不难记。 最后是概率论与数理统计,第一道是二维随机变量的分布函数和概率密度,如果搞清楚了随机变量函数的意义,根据已知条件,这个模型不难建立,还是回到原理这个说法上,概率论的东西比较抽象,但是如果多思考一下,从现实意义上把握的话可能会轻松一些。随机变量是什么?从根本上来说就是一个函数,只不过自变量不是通常的数,而是一些事件,函数值就是这些事件对应的发生概率而已。在求函数的随机变量分布时我不主张记公式,而建议自己从随机变量的说法、定义去推出数学表达式。第二道考数字特征,当然也把数理统计里的样本揉进来了,样本之间意味着相互独立,注意数字特征的某些特征要求随机变量之间相互独立,有些则不然,总之要分清这些性质,最好能准确归类。举个例子,两个正态分布的线性组合仍是正态分布,这对不对?粗看上去没什么不妥的,但这个结论却是错的,因为必须是独立的两个正态分布才有这个性质。参考资料:http://bbs.e.sina.com.cn/tableforum/App/view.php?bbsid=44&subid=3&tbid=6126&fid=16687

考研数学基础阶段如何做题

不亦拂乎
大间谍
考研公共课中,数学是被最多考生视作第一难关的“拦路虎”。现在许多大三的学生已经开始投入到基础复习中,对怎样合理安排复习计划、把握复习重点、复习使用的教材以及复习方法等多方面的问题都有诸多疑惑。在基础阶段,数学需要做一定数量的题,那如何才能通过做题来提高数学成绩呢?今天跨考教育数学教研室李擂老师今天就和大家谈谈基础阶段做题的问题。 切忌眼高手低 “眼高手低”是很多考生在复习数学时易犯的错误,很多考生对基础性的东西不屑一顾,认为这些内容很简单,用不着下劲复习,还有的考生只是“看”,认为看懂就行了,很少下笔去做题,结果在最后的考试中眼熟手生,难以取得好的成绩。所以,在复习数学时一定要脚踏实地,一步一个脚印,就像下象棋,要取敌方老帅,就要老老实实战败所有兵卒,稳扎稳打,步步为营,这样的话,才能以不变应万变,在最后的实考中占据主动! 基础是提高的前提 基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水平,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为在这个时期考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,考研本来就是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。只要坚持下去,就有成功的希望。 按题型分类进行 解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。例如复习大全当中的典型例题解析部分,就对各个章节的题目都进行了细致划分,且在题目解答部分给出一题多解的多种解题方法,极大程度拓宽同学们的思路,掌握多种解题方法和要领。第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。 做习题优选真题 在选择习题时,考生要注意,最好先不要做模拟题,应该把真题先做一遍。因为真题的错误率比较低,而且最接近实际的试题。有的模拟题出得刁钻古怪,没有可做性。如果先做模拟题,假如选的模拟题不好则白白浪费了时间,而且对自己的解题思路也有着负面影响。通过做真题,考生可以真切的体会到考研的重点,难点,重要的是掌握了各种常考的题型。在做完真题之后再做模拟题就会感觉自己的解题思路有了质的提高,对数学认识也有了新的变化。很多考生往年的经验都证明了这一点。考生在做题的同时还要注意各章节之间的内在联系,数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。考生要注意对综合性的典型考题的分析,来提高自身解决综合性问题的能力。数学有其自身的规律,其表现的一个重要特征就是各知识点之间、各科目之间的联系非常密切,这种相互之间的联系给综合命题创造了条件,因而考生应进行综合性试题和应用题训练。通过这种训练,积累解题思路,同时将各个知识点有机的联系起来,将书本上的知识转化为自己的东西。 不可忽视例题 考生在备考时还要多做例题,而不仅仅是练习题。做例题时应遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先认真做;无论做出与否都要把自己的思路详记于空白处,尤其是做不出的,一定把自己真实的思考方式记录在案,留待日后分析,而不是对了答案就万事大吉,这样做可以迅速的找到做题的感觉。总之,考生在做题目时,要养成良好的做题习惯,做一个"有心人",认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。 对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。 不要为做题而做题 当然,一味的靠做题来提高数学能力也是不足取的。曾有一个考生,平时的解题能力很高,但最后的考试成绩却不是很理想,谈到自己失利的原因时,他说,自己平时几乎全部靠做题来提高水平,而对知识点缺乏更高层次上的把握和运用,导致遇到陌生的题目时,得分率严重下降。所以考生不能为做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的把握和运用。要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。

考研数学资料我买了好多,但是发现现在有点儿做不过来,我是应该挑重点去做么?

亚衣
其往无崖
您好,复习进度和方法自己掌握,教材吃透是最重要的,尤其是高数这部分,线代和636f707962616964757a686964616f31333335333163概率还说些。例题看懂就行了。课后题有类型题挑有代表性的做些就可以了,全做肯定超级浪费时间,把这些全做完了的话就可以上全书了。全书要多吃透些。打好强化基础。对于考研数学:这个阶段是打实基础的阶段,以数学教材为主吧,高数是一大块,概率和线代相对简单一些。多把时间往高数上面倾斜一下吧,里面占的分数也多一些。多看教材,就像第一遍学的一样,把教材的知识点,定理证明什么的都好好理解一下,最好配合上去年的数学考研大纲,有所侧重。对于课后习题,不建议全做,挑有代表性的做一部分,其他的想想思路配合答案书看看就可以了,全做太浪费时间了,只要把方式方法解题技巧掌握了就可以了。之后就是用复习全书、660什么的,然后就是真题了。把时间和进度好好规划一下吧。慢慢的学着,心不能急。给你贴一个参考书目总结,我从别人那里借鉴过来的。希望对你有帮助。想好了自己是考数学几,望采纳1、李永乐李正元《数学复习全书》*****,同样效用的有陈文登的《数学复习指南》****,不过文登的重技巧,精华在微积分,永乐的重基础,而且从近三年的考试来看,全书更加适合考研,文登的有部分内容超纲。如果已经买了文登那本复习指南,强烈推荐再买本永乐的《线性代数辅导讲义》*****,因为永乐的线代深入浅出,非常好,可以弥补文登的线代那部分的不足。想考更高分的战友可以两本都选(个人认为全书是必备的); 2、数学基础过关660题*****,不是必备,但是在前期作为打基础的练习非常不错。 3、历年真题。最好的有两个版本,一个是永乐的《历年试题解析》*****,好处在于按章节分类,题目后面还有评注,历年试卷放前面可以自测;另一个西安交大的武忠祥的《历年数学考研试题研究》****,好处在于按章节分类,还有考试考点分析和分类统计。每章后面有同步练习。如果买不到这两本,其他任何版本的真题都一样***。还有一个推荐大家买的就是可以单买一本聚焦FOCUS的考研真题集*****,性价比极高,只要2元,多买两本都不会亏,因为真题多做几遍分数就多长几分。详解就算了。 4、《数学最后冲刺超越135分》*****;或者文登的《题型集粹与练习题集》****作为最后冲刺阶段的查漏补缺。 5、李永乐《数学全真模拟经典400题》至少做三遍*****。其他的模拟题不要多买,虽然说是题海战术,但是太多了浪费,而且不做影响心情。恩波的模拟题***,考试虫的模拟题***,可以下载到合工大的题目最好****,跟真题比较接近 6、另外比较好的辅导书有《考研数学单项选择题解题方法与技巧》****和概率论与数理统计讲义(提高篇)****。有条件的可以下载新东方的网络课件,这个课件已经足够了,最好能下到永乐05年的线性代数讲课*****,非常经典,还有06费允杰的概率讲课也非常经典*****。其他田根宝的线代和概率课件就不用了,不推荐;还有文登的冲刺讲课也没有必要,辅导班就更加不用上了。原则上是能自己看书就不要课件,因为听课非常浪费时间。实在基础不行就听课吧。 记住一点,好的书可以让你更加快捷的到达终点。但是书不在多,一定要多做几遍并且总结方法。课件是非常浪费时间的,能看书就不要使用课件。欢迎向158教育在线知道提问

求考研数学短期内(3个月左右)最有效的高分复习方法

孝弟
道德不一
我个人觉得需要至少四个月的时间(可能是我比较愚钝)。如果是那种整天只版看数学不看其他的话三个月可能是权够的。有两种办法:1.速成。直接看大纲解析,里面的例题基本是历年真题。先看概念再做题。全部做完以后再从头过一遍,然后再整理一遍。这大概需要一个半月。然后花几天的时间把历年真题模拟一遍(这时你会发现自己很牛,因为这些全是做过的题)。接着再把高数书的一元微积分部分的概念推导看看。最后再选一本薄的分专题的书练上一个月,有可能的话再找其他的书练练。2.稳妥,但时间一定要足够充足。选一本厚砖,按上面同样的步骤弄上三遍(只看例题即可),看的时候顺便看看高数里的概念推导。然后就是研究真题。最后同样也是保持状态、查漏补缺的适当练习。纯属个人意见