欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学复习有什么好的解题思路,方法和技巧

狂舞派
游侠
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条丌紊地分析和计算。建议使用毙考题app ,哈哈那边有很多技巧干货~

考研数学,已经复习了一遍但作题还是没思路!怎样进行思维的训练以提高解题能力!

蹙之乎颐
道也
不知道你所谓的已经复习了一遍是怎么复习的,我当时是分为3步走的。第一步,先看课本概念公式和例题,然后做课后习题,这一步对于打基础很重要,这一步可能会花比较长 的时间,但是基础好了,再综合就不怕了。第二步,有一本历年试题,前面是按知识章节分的,后面又回归真题本身,按年的。我就看这本书的前面,把每道题目盖住答案自己做,然后看答案,自己做错了的或者自己不会的,再回到课本看相关的知识,并把该题目做记号,过一个星期再做一做这道题目。主要是掌握解题思路,这里面很多是综合的题目,自己多想一想哪些公式有什么联系,是怎样被一道题目综合在一起的,甚至可以自己编题目,把一些公式综合起来。第三步,就是计时的做真题,给自己模拟真实的考场环境,锻炼自己把握时间的能力。当然也是用刚才提到的那本书。参考资料:自己的经验找历届试卷做,一口气做完。

考研数学的技巧

方向感
武林
首先说的,研究生数学考试这种难度,天赋起的作用很小,实在难的题,绝大多数人都做不起。我有同学对理科悟性不是很好,他仍然考了高分,希望不要拿天赋做学不好的理由。具体到复习,我主要谈自己的复习方法。我主要用学校发的课本和上课时的配套辅导书。课本看了n遍,除了暑假比较有计划完整看完一遍,其他时候都是决定自己忘记了就又再看的。课后题做了一半,辅导书做了1遍,看了2遍,陈文登的辅导书,顺手翻了下,几乎没看。李永乐的660题做了200道后,实在做不下去,丢了。最后做了几套模拟题,其他的就没做。说一下这样复习的效果吧。暑假前看书,做课后习题,效果不好。暑假有一天,突然算了下,时间不多了,放下英语,只看数学,每天都是,看教课书,做课后题,看辅导书,暑假完,检测效果,04年真题没有做错一道。然后开始得意,不重视了,后面的问题也随之而来。数学的郁闷:10月底11月初开始做真题时,困难出现了,准确率低,经常看错题。数学真题有些年还是比较难的,不过我并不怕难。我的问题是,难的题做得起,简单的题也要做错,计算准确度极低。我懂得一个简单道理,考试做题不在于难度,而在于准确度,于是自信心被打击惨了。 如果简单的都做不对,怎么有精力有信息去做难题?开始我用无格作业本,一道道规范的做,后来和同学交流这种情况,他建议我用有格子的本子认真写,接下来12月、1月,我都按照这么做。准确度也慢慢提高了。不过还达不到高三时的那种状态,做了题根本不用检查,现在是检查几遍都不放心,都要错。这种问题也反映在06年的真题当中,算错,看错题都出现。经验与建议:我觉得数学主要是概念问题,做题也是为了更深地理解概念的内涵和外延(大家可以参考去年,某兄问概率中一般概率、条件概率方面那个问题,对照下,自己对这些概念理解到哪个程度)。这就是我选择以上复习方法的理论依据,还有一个原因上面已经提到过,我很懒,这样比较省事。重视基础,不要追求难题,举个例子,微积分中的一个总复习(积分证明方面)中有几道题,我一看,自己没有能力做出来,直接跳过,一直到最后考试前,我都没有看过它们。关于数学教材,我觉得最好选自己以前用过的,那样可减少难度,数学复习辅导用书,自己视情况选择,实际上我觉得哪本书,只要弄透了,求精不求多,就能考一个好的分数。数学课本后的习题,如果能全部做对(不是凭记忆做出),考分上120,一点问题都没有。

考研数学选择题解题的技巧都有哪些?

莫如弃世
玛丽娅
选择题命题特点考研数学的选择题都是单选题,主要分为三种类型:计算型、概念型、理论型。计算型选择题主要考查的是考生对基本方法的掌握程度和运算能力。概念型选择题主要考查同学们对基本概念的理解及对概念的运用。理论型选择题主要考查考生对基本性质、定理、方法的条件及结论的掌握,同时考查分析、比较、判断和推理的能力。在这三种类型中,以概念型和理论型的选择题为主,而计算型的题目在选择题中出现的较少,计算能力的考查主要集中在填空题和解答题。知识点也可关注下北京新东方的考研数学课程。

考研数学一常考题型是哪些?有没有解题技巧归纳总结?

寒风镇
风雨
我看很多同学会看毛纲源2017《考研数学客观题简化求解》毛纲源2017《考研数学常考题型解题方法技巧归纳》这两本书都有很强的答题技巧性,对考研常考的题型和答题方面做了全面汇总。养成做题仔细的好习惯,制作好错题集。从每一年的考研数学考试成绩分析来看,好多同学平时眼高手低、考试时由于粗心大意而失掉了不该失掉的分,后悔莫及,所以同学们平时就要养成做题仔细的好习惯,同时建议同学们制作一个错题集,这样我们在以后的复习中,可以反复着重复习这些错题,不但节省了复习时间,而且还提高了复习质量和效率。考研数学的复习需要足够的耐心和毅力,当自己遇到难题或者学 习感觉累的时候要做适当的休息或者跟其他同学出去走走适当的运动一下来调节自己,多和研友互相交流复习经验技巧,扬长补短。

考研数学复习方法

神者勿齿
同工同酬
考研数学由:高数、线代及概率统计三大科目组成。高数、线代及概率是考研数学的三大难,数学科目要掌握其科目规律及命题规律才能更好的去规划安排强化阶段的学习,需要分析数学的突破口。三大科目规律一、高数(1)知识多高等数学从大的方面分为一元函数微积分和多元函数微积分。一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学。另外还有微分方程和级数,这两章内容可看成是微积分的应用。除此之外还有向量代数与空间解析几何。其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别。总的来说:高数复习需花费最多的时间,它的成败直接关系到考研的成败。(2)模块感清晰高数的题会了一道,一类的就会了。如幂级数求和展开,记住常见的几个泰勒级数公式,会通过基本变形或求导求积把已知函数(或级数)朝常见公式转化,这类问题就基本解决了。而线代不是这样,基本类型题目会了,考得深入些就心里没底了。 二、概率概率的知识结构是个倒树形结构。第一章随机事件与概率是基础,在此基础上引入随机变量,而分布是随机变量的描述方式。第二章和第三章介绍随机变量及分布。分布描述了随机变量全部的信息,而数字特征仅描述了部分信息(如离散型随机变量的数学期望可以理解成该随机变量在概率意义下的平均值)。之后讨论整个概率的理论基础——大数定律和中心极限定理。概率论部分就到此为止了。数理统计看成对概率论的应用。三、线代线代的知识结构是个网状结构:知识点之间的联系非常多,交错成一个网状。以矩阵A可逆为例,请大家考虑一下有哪些等价条件。从向量组的角度,为矩阵A的列向量组(或行向量组)线性无关;从行列式的角度,为矩阵A的行列式不为零;从线性方程组的角度,为Ax=0仅有零解(或Ax=b有唯一解);从二次型的角度,为A转置乘A正定从秩的角度,为矩阵的秩为矩阵的阶数;从特征值的角度,为矩阵的特征值不含零。不难发现,以矩阵可逆这个基本的概念可以把整个线代串起来。 三大科目复习方法及重难点●高等数学(1)复习要点:极限的求法;变限积分的应用;导数应用;重积分的计算。(2)复习方法:高等数学要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。注意综合题的考察。一般说来,综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。(3)高数重点题型汇总●线性代数(1)复习要点:行列式、矩阵公式;线性方程组的求解;相似对角化问题.(2)复习方法:线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准型与规范形,正定,合同变换与合同矩阵。线性代数中运算法则多,应整理清楚不要混淆,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准型)。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,大家复习时要注重串联、衔接与转换。(3)线性代数重点题型汇总●概率论与数理统计(1)复习要点:常见分布;数字特征;点估计问题;(2)复习方法:最近几年理工类数学考试重点内容的顺序是:①二维随机变量及其概率分布;②随机变量的数字特征;③随机事件和概率;④数理统计。最近4年数学三考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④数理统计。最近几年年经管类数学考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④大数定律和中心极限定理。与"微积分"和"线性代数"不同的是,在概率论与数理统计中对基本概念的深入理解所占的比例相当大,而其中解题的方法并不多,涉及到的技巧是很少的(甚至可以说没有技巧)。要结合概率论与数理统计自身的特点,进行有针对性的复习。强化阶段的主要目标是熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。(3)概率论与数理统计重点题型汇总(上)、(下)2021考研大纲已经出来了,同学们可以按照新的考试大纲来进行复习,对于有变化的部分,有针对性的进行复习。把基本概念弄懂,把基本理论弄透数学有庞大的知识体系,从知识论的角度来讲,它的内在结构很严正,很富有层次感。从概念、定义到公理,从公理到定理、推论,层层演进,步步深入,很多人知其然、不知其所以然,就是因为忽视了数学最基础的知识,有时候你绞尽脑汁不得其解,很可能只是因为你对某个概念的理解不够透彻,我曾经的数学老师就特别告诫学生,要把握、领悟那些最基础的数学概念。我所谓的把基本概念搞懂,是从以下几个方面来理解和把握的:首先是这个概念产生的实际背景是什么,界定此概念所运用到的数学思想和方法是什么。接下来要弄懂这个概念的定义式,包括它的数学含义、几何意义和物理意义,以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能地从这几个方面来理解把握。弄懂概念,是学懂数学的至关重要的一步。理论性的内容,比如说定理、性质、推论,首先要清楚它的条件是什么,结论是什么,这是最起码的要求。数学考试事实就是考察这些定理、推论的运用,只要理解透了,不管出题方式怎么刁钻,你都可以以静制动,以不变应万变。仔细阅读教材,重视做题训练我觉得不同学校教材的编排体系会有比较大的差异,如果不是特别有时间和精力,还不如仔细阅读你早已经熟悉的教材,扎扎实实地多啃几遍,肯定每次都会有新的发现。所谓“读书百遍,其义自现”,还是有其道理的。看教材要细致,要对基本概念、基本定理有充分地理解,最好还要弄懂每个定理的证明过程,我认为这些定理的证明过程对培养缜密的思维逻辑和良好的思维习惯非常有帮助。此外,课后的练习十分重要,课后练习题是对基本概念、基本定理最基础的拓展和应用。熟悉了教材之后,需要做题来巩固知识,以加深对概念和定理的理解,使数学解题能力更上一层楼。这个时候,我们选择的练习题不能难度过大,否则会极大地打击前一个阶段建立起来的信心,但如果题型过于简单又让我们无法领悟研究生入学考试数学科目的难度。掌握做题的原则开始做题的时候,要从小题开始做,小题一般需要的知识点少,运算量也比较少,易于刚开始复习的考生。做题训练的顺序应该是先易后难,先做简单题,后做综合和大题。这样使整个做题过程有个良好的开端,并鼓舞考生信心。从而一道题接着一道题去做,既保持了做题的积极性,同时也锻炼了做题的能力。在考试过程中,考生尤其要注意时间效益,假如遇到两道题目都不太会做,就优先做高分题,尤其是“分段得分”,注意计算过程。与此同时,要求考生审题要慢,思路要清晰,答题速度要快。在答题中宁慢勿快,争取得分保证。认真思考每一道题很通俗易懂的一句话“做题的时候多用用脑子”。很多考生在后期复习时,由于做题的数量达到一定的程度,再做一些题的时候,还是会感到不会做,这就是很多考生的通病,在题海练习中做题时不求甚解,也不分析出题者的出题思路以及想要考查的知识点,从而,就是做了再多的题也是白费。考生们在做题的时候一定要学着思考,举一反三,加强记忆,避免习惯性思维。考研数学有部分题型就是考察考生的逆向思维,所以,需要考生在做题的时候集中精神最大限度的发挥脑细胞能量。这样,再遇到什么类型的题目,考生都可以游刃有余。深刻领悟考研试题,把握出题趋势考研试题是往年的考研试题,众所周知,考研试题对于复习的作用很大。从考研的发展趋势来看,题目难度变化不大,始终维持在一定的水平。所以深刻领悟考研试题就尤其显得重要,不但可以让我们了解自己的解题能力大概是什么水平,还可以从宏观上把握命题趋势。我个人的经验是,考研试题不宜过早做,要把教材梳理完,把《考试指南》看完以后再做,最好还要留下最近两年的考研试题,等待最后冲刺时进行模拟考试。做考研试题不能草草了事,很多同学考研试题看一遍或两遍后就去做水平参差不齐的模拟题,其实最不可取。做考研试题要多看、多思、多想,善于从不同的角度寻求不同的解题思路,浅尝辄止很容易造成考研试题的价值流失。善于总结题型在题海战术下,很多考生都变的疲惫不堪,如何利用有限的做题量,提高题型正确率呢。这就要求考生在做题后,善于总结归纳,总结错题,总结经验。学会举一反三,通过总结归纳避免了做错的题一错再错。这样即便遇到不一样的题目,但是知识点相同可以巧妙运用。而且根据记录的错题,可以为后面的复习提供有效的捷径。

考研数学选择填空答题技巧!

龙行天
不违其度
您好 我也参加了14年的考研 我认为并没有什么答题技巧 主要还是真正理解理论 唯一的一个算是技巧的东西就是我觉得 先做大题比较好 这样可以保证大部分的分数 从您的分数来看我觉得您欠缺的不仅仅是技巧吧 希望对你有所帮助你好!很感谢您的回答,其实我在考研前就只做过三套真题,模拟题也做过几套,但是都不是每一套从头到尾作下来的,而是分开类来做的。考试的时候我感觉很是不顺。我感觉这是不是和练得卷子少有关啊!我可能是片面的注重单个知识,而忽略了整体的把握,而应该整合在一张卷子上整体的练一下。能给点建议吗??你感觉做选择填空的合理时间应该是多长时间??我是数一的。谢谢!!当然要考统计学专业,数学三,英语 ,以及政治啊,这是初试,不过还有复试,要考综合性统计学,不过你首先还是把初试过了再说!只要你肯努力应该没问题,我相信你会的!至于数学是很重要的他是考研的核心,拿分的关键,所以你要去看下提纲如下:一、微积分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数基本初等函数的性质及图形初等函数 数列极限与函数极限的概念 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较极限 四则运算 两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法。深入了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数、反函数、隐函数和分段函数的概念。 4。掌握基本初等函数的性质及其图形,理解初等函数的概念。 5.会建立简单应用问题中的函数关系式。 6.了解数列极限和函数极限(包括左、右极限)的概念。 7.了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。了解无穷大的概念及其与无穷小的关系。 8.了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹*定理),掌握极限四则运算法则,会应用两个重要极限。 9.理解函数连续性的概念(含左连续与右连续)。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用。 二、一元函数微分学 考试内容 导数的概念 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'HoSpital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1。理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法以及对数求导法。 3.了解高阶导数的概念,会求二阶、三阶导数及较简单函数的N阶导数。 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性:掌握微分法。 5.理解罗尔(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的条件和结论,掌握这三个定理的简单应用。 6.会用洛必达法则求极限。 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题)。 8.掌握曲线凹凸性和拐点的判别方法,以及曲线的渐近线的求法。 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元 积分法和分部积分法 定积分的概念和基本性质 积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton一Leibniz)公式 定积分的换元 积分法和分部积分法广义积分的概念和计算定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握计算不定积分的换元积分法和分部积分法。 2.了解定积分的概念和基本性质。掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。会求变上限定积分的导数。 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。 4.了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件。 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数的概念与计算多元复合函数的求导法 隐函数求导法 高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的表示法与几何意义 2.了解二元函数的极限与连续的直观意义。 3.了解多元函数偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法,会用隐函数的求导法则。 4.了解多元函数极值和条件极值的概念/掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值。会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。会计算无界区域上的较简单的二重积分。 五、无穷级数 考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念级数的基本性质与收敛的必要条件 几何级数与户级数的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数莱布尼茨定理幂级数的概念 收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数幂级数在收敛区间内的基本性质简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和等概念。 2.掌握级数收敛的必要条件及收敛级数的基本性质。掌握几何级数及P 级数的收敛与发散的条件。掌握正项级数的比较判别法和达朗贝尔(比值)判别法。 3.了解任意项级数绝对收敛与条件收敛的概念,掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛的判别方法。 4.会求幂级数的收敛半径和收敛域。 5.了解幂级数在收敛区问内的基本性质(和函数的连续性、逐项微分和逐项积分),会求一些简单幂级数的和函数。 6·掌握(略)等幂级数展开式,并会利用这些展开式将一些简单函数间接展成幂级数。 六、常微分方程与羡分方程 考试内容 微分方程的概念 微分方程的解、通解、初始条件和特解变量 可分离的微分方程 齐次方程一阶线性方程 二阶常系数齐次线性方程及简单的非齐次线性方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶、通解、初始条件和特解等概念。 2.掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。 3.会解二阶常系数齐次线性方程和自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程。 4.了解差分与差分方程及其通解与特解等概念。 5.掌握一阶常系数线性差分方程的求解方法。 6.会应用微分方程和差分方程求解一些简单的经济应用问题。 二、线往代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理克莱姆(Crammer)法则 考试要求 1.理解门阶行列式的概念。 2.掌握行列式的性质,会应用行列式的性质和行列式按行(列)展开定理计算行列式。 3.会用克莱姆法则解线性方程组。 二、矩阵 考试内容 矩阵的概念 单位矩阵、对角矩阵、数量矩阵、三角矩阵、对称矩阵和正交矩阵矩阵的和数与矩阵的积 矩阵与矩阵的积 矩阵的转置 逆矩阵的概念和性质 矩阵的伴随矩阵 矩阵的初等变换 初等矩阵 分块矩阵及其运算矩阵的秩 考试要求 1.理解矩阵的概念,了解几种特殊矩阵的定义和性质。 2.掌握矩阵的加法、数乘、乘法,以及它们的运算法则;掌握矩阵转置的性质;掌握方阵乘积的行列式的性质。 3.理解逆矩阵的概念、掌握逆矩阵的性质。会用伴随矩阵求矩阵的逆。 4.了解矩阵的初等变换和初等矩阵的概念;理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩。 5.了解分块矩阵的概念,掌握分块矩阵的运算法则。 三、向量 考试内容 向量的概念 向量的和数与向量的积 向量的线性组合与线性表示 向量组线性相关与线性元关的概念、性质和判别法 向量组的极大线性元关组 向量组的秩 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则。 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法。 4.理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩。 四、线性方程组 考试内容 线性方程组的解 线性方程组有解和元解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线住方程组的通解 考试要求 1.理解线性方程组解的概念,掌握线性方程组有解和无解的判定方法。 2.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 3.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解。 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念 相似矩阵 矩阵的相似 对角矩阵 实对称矩阵的特征值和特征向量 考试要求 1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。 2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法。 3.掌握实对称矩阵的特征值和特征向量的性质。 六、二次型 考试内容 二次型及其矩阵表示 合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 正交变换二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型。 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念(了解惯性定理的条件和结论,会甩正交变换和配方法化二次型为标准形。正定二次型、正定矩阵的概念,掌握正定矩阵的性质。 三、概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间事件的关系 事件的运算及性质 事件的独立性完全事件组概率的定义概率的基本性质古典型概率条件概率““法公式乘法公式全概率公式和贝叶斯(Bayes)公式独立重复试验 考试要求 1.了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。 2,理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、乘法公式以及全概率公式、贝叶斯公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 二、随机变量及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 二维随机变量及其联合(概率)分布 二维离散型随机变量的联合概率分布和边缘分布 二维连续型随机变量的联合概率密度和边缘密度随机变量的独立性 常见二维随机变量的联合分布 随机变量函数的概率分布 两个连续型随机变量之和的概率分布 χ2分布 t分布 F分布 分位数的概念 考试要求 1.理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x}的概念及性质;会计算与随机变量有关的事件的概率。 2.理解离散型随机变量及其概率分布的概念,掌握0一1分布、二项分布、超JLnn分布、泊松(POison)分布及其应用。 3.理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系;掌握均匀分布、指数分布正态分布及其应用 4.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及其两种基本形式:离散型联合概率分布和边缘分布、连续型联合概率密度和边缘密度;会利用二维概率分布求有关事件的概率。 5.理解随机变量的独立性及不相关性的概念,掌握离散型和连续型随机变量独立的条件。 6.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义。 7.掌握根据自变量的概率分布求其较简单函数的概率分布的基本方法;会求两个随机变量之和的概率分布;了解产生χ2变量、,变量和F变量的典型模式;理解标准正态分布:χ2 分布、T分布和F分布的分位数,会查相应的数值表。 三、随机变量的数字特征 考试内容 随机变量的数学期望、方差、标准差以及它们的基本性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 两个随机变量的协方差及其性质 两个随机变量的相关系数及其性质 考试要求 1.理解随机变量数字特征(期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,掌握常用分布的数字特征。 2.会根据随机变量1的概率分布求其函数的数学期望Eg(X);会根据随机变量调和Y的联合概率分布求其函数g(x,Y)的数学期望Eg(x,y)。 3.掌握切比雪夫不等式。 四、大数定律和中心极限定理 考试内容 切比雪夫(Chebyhev)大数定律伯努利(Bemoulli)大数定律辛钦(Khinchine)大数定律泊松(Pojhon)定理 列莫弗一拉普拉斯定理(二项分布以正态分布为极限分布)列维一林德伯格定理(独立同分布的中心极限定理) 考试要求 1.了解切比雪夫、伯努利、辛钦大数定律成立的条件及结论,理解其直观意义。 2.掌握泊松定理的结论和应用条件,并会用泊松分布近似计算二项分布的概率。 3.掌握椽莫弗一拉普拉斯中心极限定理、列维一林德怕格中心极限定理的结论和应用条件,并会用相关定理近似计算有关随机事件的概率。 五、数理统计的基本概念 考试内容 总体个体简单随机样本统计量经验分布函数样本均值、样本方方差 样本矩 考试要求 理解总体、简单随机样本、统计量、样本均值与样本方差的概念;了解经验分布函数;掌握正态总体的抽样分布(标准正态分布、χ2分布、F分布、T分布 六、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 极大似然估计 估计量的评选 标准区间估计的概念 单个正态总体均值的区间估计 单个正态总体方查和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1. 理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、最小方差性(有效性)和相合性(一致性)的概念,并会验正估计量的无偏性。 2.掌握矩估计法和极大似然估计法 3. 掌握单个正态总体的均值和方差的置信区间的求法 4. 掌握两个正态总体的均值差和方差比置信区见的求法 七、假设检验 考试内容 显著性检验的基本思想、基本步骤和可能产生的两类错误 单个和两个正态总体的均值差和方差的假设检验 考试要求 1。理解显著兴建研的基本思想,掌握假设检验的基本步骤了解假设检验可能产生的两类错误 2.了解单个和两个正态总体的均值和方差的假设检验。 试卷结构 (一)内容比例 微积分约50% 线性代数约25% 概率论与数理统计约25% (二)题型比例 填空题与选择题约30% 解答题(包括证明题)约70%本回答被网友采纳

求教,考研数学如何突击。。跪求。。。

铳墓
就考试形式来说,数学的本质就是解题,考研数学也不例外。因此可以说,考研数学的复习过程就是培养解题思路的过程,所以,如何解决问题是考研数学获取140+高分的关键之所在。其中最重要的就是做题汤家凤2017《考研数学接力题典1800·数学一》第一、准确把握大纲要求的三基所谓“三基”指的是:基本概念、基本理论、基本方法。只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。而数学的概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。第二、要加强解综合性试题和应用题能力的训练综合题的考查内容可以是同一学科不同章节之间的综合,也可以是不同学科之间的综合。近几年试卷中常见的综合题有:级数与数列的综合题;微积分与微分方程的综合题;空间解析几何与多元函数微积分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉每个知识点规范的解题思路。第三、要重视历年真题的强化训练每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。所以希望考生要注意年年被考到的内容,对往年考题要全部消化巩固。这样,通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有针对性地重点解决解题思路问题。综上所述,同学们要想提高解题能力,熟练掌握三基、强化训练综合应用题和重点题型解题思路、做历年真题并归纳总结历年真题命题规律并有针对性的突破,是提高解题能力考得好成绩的必须要素。最后,冲刺阶段可以给你推荐 汤家凤的2017《考研数学绝对考场最后八套题》预祝各位同学考研成功!

考研,数学,求高阶导数的各种方法!!

未尝绝音
一般来讲,首先看它是不是常见的那几个函数(指数函数,三角函数)什么的,如果是,直接套公式;其次:如果不是,则看能不能写成上面几个函数的和式或者乘积表达式,如果是和式,直接用求导法则,如果是乘积,用莱布尼兹法则写出通项后求和即可再次:观察可不可以对函数求出几阶导数之后变成上面的两种情况;最后,实在不行,看看能不能用数学归纳法求解。上面的方法没有前后顺序,呵呵,关键看你的数学感觉。1、一般来说,当然就是一次一次地求导,要几次导数给几次;2、上面的方法比较沉闷,而且容易出错,通常根据被求导的函数,求几次导数后,根据结果,找到规律,然后用归纳法,证明结果正确;3、在解答麦克劳林级数、泰勒级数时,经常要求高阶导数,找规律是非常需要技巧的,很多情况下,递推公式(Renction)是很难找到。实在找不到时,只能写一个抽象的表达式。步骤:第一步:确定函数的定义域.如本题函数的定义域为R.第二步:求f(x)的导数f′(x).第三步:求方程f′(x)=0的根.第四步:利用f′(x)=0的根和不可导点的x的值从小到大顺次将定义域分成若干个小开区间,并列出表格.第五步:由f′(x)在小开区间内的正、负值判断f(x)在小开区间内的单调性.第六步:明确规范地表述结论.第七步:反思回顾.查看关键点、易错点及解题规范.这个公式是说,对y(x)=u(x)v(x)求n阶导数时候,可以表示为u(x)的n-i阶导数乘v(x)的i阶导数的积的叠加,其系数是C(i,n)。那个C是组合符号,C(i,n)=n!/(i!(n-i)!)莱布尼兹公式好比二项式定理,它是用来求f(x)*g(x)的高阶导数的。展开的形式我就不多说了。一般来说,f(x)和g(x)中有一个是多项式,因为n次多项式求n+1次导数就变成0了,可以给计算带来方便。就本题:y的100阶导数=(x的0阶导数*shx的100阶导数)+100(x的1阶导数*shx的99阶导数)+99*100/2(x的2阶导数*shx的98阶导数)+......如前所说,x的2阶以上导数都是0,所以上式只有前两项,所以:y的100阶导数=xshx+100chx1.把常用初等函数的导数公式记清楚;2.求导时要小心谨慎,尤其是关于复合函数的导数。===========================姜永哲11、、请勿转载=====这里将列举六类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):1.常函数(即常数)y=c(c为常数) y'=0 【y=0 y'=0:导数为本身的函数之一】2.幂函数y=x^n,y'=n*x^(n-1)(n∈R) 【1/X的导数为-1/(X^2)】基本导数公式3.指数函数y=a^x,y'=a^x * lna 【y=e^x y'=e^x:导数为本身的函数之二】4.对数函数y=logaX,y'=1/(xlna) (a>0且a≠1,x>0);【y=lnx,y'=1/x】5.三角函数(1)正弦函数y=(sinx )y'=cosx(2)余弦函数y=(cosx) y'=-sinx(3)正切函数y=(tanx) y'=1/(cosx)^2(4)余切函数y=(cotx) y'=-1/(sinx)^26.反三角函数(1)反正弦函数y=(arcsinx) y'=1/√1-x^2(2)反余弦函数y=(arccosx) y'=-1/√1-x^2(3)反正切函数y=(arctanx) y'=1/(1+x^2)(4)反余切函数y=(arccotx) y'=-1/(1+x^2)幂函数同理可证导数说白了它其实就是曲线一点切线的斜率,函数值的变化率上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1.建议先去搞懂什么是极限。极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献。==============================姜永哲11-------最后讲一下你那个题:====很简单,把原式看做(ax+b)和1/(cx+d)相乘的n阶导数,然后用莱布尼茨公式展开就行了。注意(ax+b)二阶以上的导数全部是0,而1/(cx+d)的n阶导数很好求。 结果应该是:(ax+b)×[(-c)^n×n!/(cx+d)^(n+1)]+n×a×[(-c)^(n-1)×(n-1)!/(cx+d)^n] 刚才失误了。。。忘了阶乘。。。 答案是正确的,你把我的解答同分一下化简就会发现跟答案一样。你自己做的应该是不对的。可以取n=2,3的特殊情况看一下。