遥遥无期
考研数学由:高数、线代及概率统计三大科目组成。高数、线代及概率是考研数学的三大难,数学科目要掌握其科目规律及命题规律才能更好的去规划安排强化阶段的学习,需要分析数学的突破口。三大科目规律一、高数(1)知识多高等数学从大的方面分为一元函数微积分和多元函数微积分。一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学。另外还有微分方程和级数,这两章内容可看成是微积分的应用。除此之外还有向量代数与空间解析几何。其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别。总的来说:高数复习需花费最多的时间,它的成败直接关系到考研的成败。(2)模块感清晰高数的题会了一道,一类的就会了。如幂级数求和展开,记住常见的几个泰勒级数公式,会通过基本变形或求导求积把已知函数(或级数)朝常见公式转化,这类问题就基本解决了。而线代不是这样,基本类型题目会了,考得深入些就心里没底了。 二、概率概率的知识结构是个倒树形结构。第一章随机事件与概率是基础,在此基础上引入随机变量,而分布是随机变量的描述方式。第二章和第三章介绍随机变量及分布。分布描述了随机变量全部的信息,而数字特征仅描述了部分信息(如离散型随机变量的数学期望可以理解成该随机变量在概率意义下的平均值)。之后讨论整个概率的理论基础——大数定律和中心极限定理。概率论部分就到此为止了。数理统计看成对概率论的应用。三、线代线代的知识结构是个网状结构:知识点之间的联系非常多,交错成一个网状。以矩阵A可逆为例,请大家考虑一下有哪些等价条件。从向量组的角度,为矩阵A的列向量组(或行向量组)线性无关;从行列式的角度,为矩阵A的行列式不为零;从线性方程组的角度,为Ax=0仅有零解(或Ax=b有唯一解);从二次型的角度,为A转置乘A正定从秩的角度,为矩阵的秩为矩阵的阶数;从特征值的角度,为矩阵的特征值不含零。不难发现,以矩阵可逆这个基本的概念可以把整个线代串起来。 三大科目复习方法及重难点●高等数学(1)复习要点:极限的求法;变限积分的应用;导数应用;重积分的计算。(2)复习方法:高等数学要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。注意综合题的考察。一般说来,综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。(3)高数重点题型汇总●线性代数(1)复习要点:行列式、矩阵公式;线性方程组的求解;相似对角化问题.(2)复习方法:线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准型与规范形,正定,合同变换与合同矩阵。线性代数中运算法则多,应整理清楚不要混淆,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准型)。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,大家复习时要注重串联、衔接与转换。(3)线性代数重点题型汇总●概率论与数理统计(1)复习要点:常见分布;数字特征;点估计问题;(2)复习方法:最近几年理工类数学考试重点内容的顺序是:①二维随机变量及其概率分布;②随机变量的数字特征;③随机事件和概率;④数理统计。最近4年数学三考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④数理统计。最近几年年经管类数学考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④大数定律和中心极限定理。与"微积分"和"线性代数"不同的是,在概率论与数理统计中对基本概念的深入理解所占的比例相当大,而其中解题的方法并不多,涉及到的技巧是很少的(甚至可以说没有技巧)。要结合概率论与数理统计自身的特点,进行有针对性的复习。强化阶段的主要目标是熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。(3)概率论与数理统计重点题型汇总(上)、(下)2021考研大纲已经出来了,同学们可以按照新的考试大纲来进行复习,对于有变化的部分,有针对性的进行复习。把基本概念弄懂,把基本理论弄透数学有庞大的知识体系,从知识论的角度来讲,它的内在结构很严正,很富有层次感。从概念、定义到公理,从公理到定理、推论,层层演进,步步深入,很多人知其然、不知其所以然,就是因为忽视了数学最基础的知识,有时候你绞尽脑汁不得其解,很可能只是因为你对某个概念的理解不够透彻,我曾经的数学老师就特别告诫学生,要把握、领悟那些最基础的数学概念。我所谓的把基本概念搞懂,是从以下几个方面来理解和把握的:首先是这个概念产生的实际背景是什么,界定此概念所运用到的数学思想和方法是什么。接下来要弄懂这个概念的定义式,包括它的数学含义、几何意义和物理意义,以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能地从这几个方面来理解把握。弄懂概念,是学懂数学的至关重要的一步。理论性的内容,比如说定理、性质、推论,首先要清楚它的条件是什么,结论是什么,这是最起码的要求。数学考试事实就是考察这些定理、推论的运用,只要理解透了,不管出题方式怎么刁钻,你都可以以静制动,以不变应万变。仔细阅读教材,重视做题训练我觉得不同学校教材的编排体系会有比较大的差异,如果不是特别有时间和精力,还不如仔细阅读你早已经熟悉的教材,扎扎实实地多啃几遍,肯定每次都会有新的发现。所谓“读书百遍,其义自现”,还是有其道理的。看教材要细致,要对基本概念、基本定理有充分地理解,最好还要弄懂每个定理的证明过程,我认为这些定理的证明过程对培养缜密的思维逻辑和良好的思维习惯非常有帮助。此外,课后的练习十分重要,课后练习题是对基本概念、基本定理最基础的拓展和应用。熟悉了教材之后,需要做题来巩固知识,以加深对概念和定理的理解,使数学解题能力更上一层楼。这个时候,我们选择的练习题不能难度过大,否则会极大地打击前一个阶段建立起来的信心,但如果题型过于简单又让我们无法领悟研究生入学考试数学科目的难度。掌握做题的原则开始做题的时候,要从小题开始做,小题一般需要的知识点少,运算量也比较少,易于刚开始复习的考生。做题训练的顺序应该是先易后难,先做简单题,后做综合和大题。这样使整个做题过程有个良好的开端,并鼓舞考生信心。从而一道题接着一道题去做,既保持了做题的积极性,同时也锻炼了做题的能力。在考试过程中,考生尤其要注意时间效益,假如遇到两道题目都不太会做,就优先做高分题,尤其是“分段得分”,注意计算过程。与此同时,要求考生审题要慢,思路要清晰,答题速度要快。在答题中宁慢勿快,争取得分保证。认真思考每一道题很通俗易懂的一句话“做题的时候多用用脑子”。很多考生在后期复习时,由于做题的数量达到一定的程度,再做一些题的时候,还是会感到不会做,这就是很多考生的通病,在题海练习中做题时不求甚解,也不分析出题者的出题思路以及想要考查的知识点,从而,就是做了再多的题也是白费。考生们在做题的时候一定要学着思考,举一反三,加强记忆,避免习惯性思维。考研数学有部分题型就是考察考生的逆向思维,所以,需要考生在做题的时候集中精神最大限度的发挥脑细胞能量。这样,再遇到什么类型的题目,考生都可以游刃有余。深刻领悟考研试题,把握出题趋势考研试题是往年的考研试题,众所周知,考研试题对于复习的作用很大。从考研的发展趋势来看,题目难度变化不大,始终维持在一定的水平。所以深刻领悟考研试题就尤其显得重要,不但可以让我们了解自己的解题能力大概是什么水平,还可以从宏观上把握命题趋势。我个人的经验是,考研试题不宜过早做,要把教材梳理完,把《考试指南》看完以后再做,最好还要留下最近两年的考研试题,等待最后冲刺时进行模拟考试。做考研试题不能草草了事,很多同学考研试题看一遍或两遍后就去做水平参差不齐的模拟题,其实最不可取。做考研试题要多看、多思、多想,善于从不同的角度寻求不同的解题思路,浅尝辄止很容易造成考研试题的价值流失。善于总结题型在题海战术下,很多考生都变的疲惫不堪,如何利用有限的做题量,提高题型正确率呢。这就要求考生在做题后,善于总结归纳,总结错题,总结经验。学会举一反三,通过总结归纳避免了做错的题一错再错。这样即便遇到不一样的题目,但是知识点相同可以巧妙运用。而且根据记录的错题,可以为后面的复习提供有效的捷径。