欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2011年考研数学二真题及解析

候车厅
去百度文库,查看完整内容>内容来自用户:氵氺o释NBF辅导,真正为考研人着想的辅导!www.nbf365.cn2011年全国硕士研究生入学考试数学二试题(NBF真题计划:公共课最准,专业课最全!)一、选择题:1-8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上。(1)已知当x→0时,f(x)=3sinx−sin3x与cxk是等价无穷小,则()(A)k=1,c=4(B)k=1,c=−4(C)k=3,c=4(D)k=3,c=−4【答】应选C【分析】本题主要考查等价无穷小量的概念,用洛必达法则或泰勒公式求极限的方法即可求得。另外,用排除法也可求解,此题属于基本题。【解法1】根据题意及洛必达法则有1=limx→03sinx−sincxk3x=limx→03cosx−ckx3cosk−13x=limx→0−3sinx+9ck(k−1)sin3xxk−2=lim−3cosx+27cos3xx→0ck(k−1)(k−2)xk−3=ck(k24−1)(k−2)1limk−3x→0x由此可得k=3,c=4,因此选C.【解法2】根据泰勒公式有此外,用排除法也可得到正确选项。首先,因为3sinx−3x−sin3x,即3sinx与sin3x是等价无穷小量,所以3sinx−sin3x是NBF考研辅导,全程包过,不过退款!QQ客服:100940168NBF辅导,真正为考研人着想的辅导!www.nbf365.cn比3x高阶的无穷小量,从而也是比cx(c≠0)高

2010年考研数学二真题及答案

长少无序
受命于天
去百度文库,查看完整内容>内容来自用户:5436800952010考研数学二真题及答案一、选择题1.A0 B1 C2 D3详解:有间断点,所以为第一类间断点,所以为连续点,所以为无穷间断点。所以选择B。2.设是一阶线性非齐次微分方程的两个特解,若常数使是该方程的解,是该方程对应的齐次方程的解,则ABCD详解:因是的解,故所以而由已知所以又是非齐次的解;故所以所以。3.A4e B3e C2e De详解:因与相切,故在上,时,在上,时,所以选择C4.设为正整数,则反常积分的收敛性A仅与取值有关B仅与取值有关C与取值都有关D与取值都无关详解:,其中在是瑕点,由无界函数的反常积分的审敛法知:其敛散性与有关,而在是瑕点,由于,其中是可以任意小的正数,所以由极限审敛法知对任意,都有收敛,与无关。故选B。5.设函数由方程确定,其中为可微函数,且则=ABCD详解:,6.(4)=ABCD详解:7.设向量组,下列命题正确的是:A若向量组I线性无关,则B若向量组I线性相关,则r>sC若向量组II线性无关,则D若向量组II线性相关,则r>s详解:由于向量组I能由向量组II线性表示,所以,即若向量组I线性无关,则,所以,即,选(A)。8.设为4阶对称矩阵,且若的秩为3,则相似于ABCD详解:设为A的特征值,由于详解:设

2019年考研数学二真题及答案解析

则敬
电影圈
去百度文库,查看完整内容>内容来自用户:跨考考研Borntowin2019年考研数学二真题及答案解析——跨考教育数学教研室一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上....(1)当x0时,若xtanx与x是同阶无穷小,则kk(A)1.(C)3.【答案】C【解析】xtanxx(x(B)2.(D)4.131xo(x3))~x3,故k3.33(2)设函数yxsinx2cosx3x22的拐点坐标为(B)0,2.(A),22(C),2【答案】C【解析】y'sinxxcosx2sinxxcosxsinx(D)33,22y''cosxxsinxcosxxsinx令y''0得x0或x当x时y''0;当x时,y''0,故(,-2)为拐点(3)下列反常积分发散的是((A))20xexdx(B)0xexdx(C)0arctanxxdx(D)dx201x21x【答案】(D)【解析】(A)0xexdx0xdexxex0exdx1,收敛..0Borntowin(B)0xexdx21x221edx,

2000年考研数学二真题及答案详解

惩戒者
祸及止虫
去百度文库,查看完整内容>内容来自用户:若如初见000000考研数学助手您考研的忠实伴侣2000年全国硕士研究生入学统一考试理工数学二试题详解及评析一、填空题()(1)limarctanx−x=x→0ln1+2x3.【答】−1.6()【详解】limx→0arctanln1+x−x2x3=limx→0arctanx2x3−x=limx→011+x2−16x2()=lim−x2x→06x21+x2=−16(2)设函数y=y(x)由方程2xy=x+y所确定,则dy=.x=0【答】(ln2−1)dx【详解】方法一:根据微分形式不变性,在已知等式两边同时求微分,得2xy(ydx+xdy)ln2=dx+dy由原方程知,当x=0时,y=1,将其代入上式,得ln2dx−dx=dy,即有dy=(ln2−1)dx,x=0方法二:在方程2xy=x+y两边对x求导,得2xyln2⋅⎛⎜⎝y+xdydx⎞⎟⎠=1+dydx将x=0代入原方程得y=1,将x=0,y=1代入上式有:ln2(1+0)=1+dydx即有dy=ln2−1dx所以dy=(ln2−1)dx,x=0∫(3)+∞dx2(x+7)x−2=.【答】π3【详解】令x−2=t,则x=t2+2,dx=2tdt,于是∫∫()∫+∞dx+∞=2tdt=limb2dt()2x+7x−20t2+9tb→+∞0t2+9=limb→+∞⎛⎜⎝23arctant3b⎞0⎟⎠=π31(4)曲线y=(2x−1)ex的斜渐近线方程为.【答】y=

2017年考研数学二真题及答案分析(word版)

家乐福
友谅
去百度文库,查看完整内容>内容来自用户:迂祿痙依烏就炊2017年全国硕士研究生入学统一考试数学二真题分析(word版)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1))若函数在处连续,则()(A)(B)(C)(D)【答案】A【解析】在处连续选A.(2)设二阶可导函数满足且,则()【答案】B【解析】为偶函数时满足题设条件,此时,排除C,D.取满足条件,则,选B.(3)设数列收敛,则()当时,当时,当时,当时,【答案】D【解析】特值法:(A)取,有,A错;取,排除B,C.所以选D.(4)微分方程的特解可设为(A)(B)(C)(D)【答案】A【解析】特征方程为:故特解为:选C.(5)设具有一阶偏导数,且对任意的,都有,则(A)(B)(C)(D)【答案】C【解析】是关于的单调递增函数,是关于的单调递减函数,所以有,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线(单位:),虚线表示乙的速度曲线,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则()(A)(B)(C)(D)【答案】B【解析】从0到这段时间内甲乙的位移分别为则乙要追上甲,则,当时满足,故选C.(7)设为三阶矩阵,为可逆矩阵,使得,则()(A)(B)(C)(D)【答案】B【解析】,因此B正确。(8)

2018年考研数学二试题及答案解析

分理
三一
去百度文库,查看完整内容>内容来自用户:杨晓霞大本营2018年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)若,则()【答案】B(2)下列函数中,在处不可导是()【答案】D(3)设函数,,若在上连续,则()【答案】D(4)设函数在[0,1]上二阶可导,且,则(A)当时,(B)当时,(C)当时,(D)当时,【答案】D(5)设,,,则的大小关系为(A)(B)(C)(D)【答案】C(6)(A)(B)(C)(D)【答案】C(7)下列矩阵中,与矩阵相似的为【答案】A(8)设为n阶矩阵,记为矩阵的秩,表示分块矩阵,则(A)(B)(C)(D)【答案】A二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)_______(10)曲线在其拐点处的切线方程是______(11)_______(12)曲线在对应点的曲率为(13)设函数由方程确定,则(14)设为3阶矩阵,为线性无关的向量组,若,则的实特征值为【答案】2三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求不定积分(16)(本题满分(

2002年考研数学二试题及答案

天下大乱
难于知无
去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设函数在处连续,则______.【答案】【考点】函数的左极限和右极限、函数连续的概念【难易度】★★【详解】本题涉及到的主要知识点:若函数在处连续,则有;解析:在处连续即(2)位于曲线,下方,轴上方的无界图形的面积是______.【答案】1【考点】定积分的几何应用—平面图形的面积【难易度】★★【详解】解析:所求面积为.其中,.(3)微分方程满足初始条件,的特解是______.【答案】【考点】可降阶的高阶微分方程【难易度】★★★【详解】本题涉及到的主要知识点:可降阶的高阶微分方程,若缺,则令.解析:方法1:将改写为,从而得.以初始条件代入,有,所以得.即,改写为.解得.再以初值代入,所以应取且.于是特解.方法2:这是属于缺的类型.命.原方程化为,得或即,不满足初始条件,弃之,由按分离变量法解之,得由初始条件可将先定出来:.于是得,解之,得.以代入,得,所以应取“+”号且.于是特解是.(4)______.【答案】【考点】定积分的概念【难易度】★★★【详解】解析:记所以.(5)矩阵的非零特征值是______.【答案】这和于是所求曲线为【难易度】★★★

2001年考研数学二试题及答案

道熙呀
终南
去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)=______.【答案】【考点】洛必达法则【难易度】★★【详解】解析:方法一:方法二:使用洛必达法则计算.(2)设函数由方程所确定,则曲线在点处的法线方程为______.【答案】【考点】隐函数的导数、平面曲线的法线【难易度】★★【详解】解析:在等式两边对x求导,得将代入上式,得故所求法线方程为即x−2y+2=0.(3)=_______.【答案】【考点】定积分的换元法【难易度】★★【详解】解析:由题干可知,积分区间是对称区间,利用被积函数的奇偶性可以简化计算.在区间上,是奇函数,是偶函数,故(4)过点且满足关系式的曲线方程为______.【答案】【考点】一阶线性微分方程【难易度】★★【详解】解析:方法一:原方程可改写为两边直接积分,得又由解得故所求曲线方程为:方法二:将原方程写成一阶线性方程的标准形式解得又由解得故曲线方程为:(5)设方程有无穷多个解,则a=______.【答案】【考点】非齐次线性方程组解的判定【难易度】★★【详解】解析:方法一:利用初等行变换化增广矩阵为阶梯形,有可见,只有当((

2014考研数学二填空题第九题

天养
红灯梦
如下