欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学二大纲对应《高等数学》和《线性代数》哪几章?

画戏人
地狱犬
教材不同,对应第几章也是不同的。主要内容为:高等数学:函数、极限、连续 一元函数微分学 一元函数积分学  多元函数微积分学(包含二重积分) 常微分方程线性代数:行列式 矩阵 向量 线性方程组 矩阵的特征值和特征向量 二次型详细大纲如下,请认真研读。2011年考研数学二大纲考试科目  高等数学、线性代数 考试形式和试卷结构  1、试卷满分及考试时间   试卷满分为150分,考试时间为180分钟。   2、答题方式   答题方式为闭卷、笔试。   3、试卷内容结构   高等数学 78%   线性代数 22%   4、试卷题型结构   试卷题型结构为:   单项选择题选题 8小题,每题4分,共32分   填空题 6小题,每题4分,共24分   解答题(包括证明题) 9小题,共94分 考试内容之高等数学  函数、极限、连续   考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:   函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质   考试要求   1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.   2. 了解函数的有界性、单调性、周期性和奇偶性.   3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念   4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.   5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.   6. 掌握极限的性质及四则运算法则   7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.   8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.   9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.   10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.   一元函数微分学   考试要求   1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.   2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.   3. 了解高阶导数的概念,会求简单函数的高阶导数.   4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.   5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.   6. 掌握用洛必达法刚求未定式极限的方法.   7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.   8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.   9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.   一元函数积分学   考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用   考试要求   1. 理解原函数的概念,理解不定积分和定积分的概念.   2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.   3. 会求有理函数、三角函数有理式和简单无理函数的积分.   4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.   5. 了解反常积分的概念,会计算反常积分.   6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.   多元函数微积分学   考试要求   1. 了解多元函数的概念,了解二元函数的几何意义.   2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.   3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.   4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.   5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).   常微分方程   考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用   考试要求   1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.   2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程   3. 会用降阶法解下列形式的微分方程: , 和 .   4. 理解二阶线性微分方程解的性质及解的结构定理.   5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.   6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.   7. 会用微分方程解决一些简单的应用问题. 考试内容之线性代数  行列式   考试内容:行列式的概念和基本性质 行列式按行(列)展开定理   考试要求   1.了解行列式的概念,掌握行列式的性质.   2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.   矩阵   考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算   考试要求   1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.   2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.   3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.   4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.   向量   考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法   考试要求   1.理解n维向量、向量的线性组合与线性表示的概念.   2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.   3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.   4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系   5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.   线性方程组   考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解   考试要求   1.会用克莱姆法则.   2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.   3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.   4.理解非齐次线性方程组的解的结构及通解的概念.   5.会用初等行变换求解线性方程组.   矩阵的特征值和特征向量   考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵   考试要求   1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.   2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.   3.理解实对称矩阵的特征值和特征向量的性质.   二次型   考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性   考试要求   1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.   2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.   3.理解正定二次型、正定矩阵的概念,并掌握其判别法.高等数学是高教5版,线性代数是同济5版同济的教材公认不错,用的最广泛。最新的是六版。

求考研数学二线性代数考试范围~

天狗
墓碑镇
1、行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理。2、矩阵考试内容:矩阵的概念、矩阵的线性运算、矩阵的乘法方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵矩阵的初等变换、初等矩阵矩阵的秩、矩阵的等价、分块矩阵及其运算。3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。5、了解分块矩阵及其运算。6、向量考试内容:向量的概念、向量的线性组合和线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组向量组的秩、向量组的秩与矩阵的秩之间的关系、向量的内积、线性无关向量组的正交规范化方法。7、线性方程组考试内容:线性方程组的克莱姆(Cramer)法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解系和通解、非齐次线性方程组的通解。8、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质、矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵。9、二次型考试内容:二次型及其矩阵表示、合同变换与合同矩阵二次型的秩、惯性定理二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、 二次型及其矩阵的正定性。扩展资料:线性方程组和向量部分常见的题型有:1、线性方程组的求解;2、方程组解向量的判别及解的性质;3、齐次线性方程组的基础解系;4、非齐次线性方程组的通解结构;5、两个方程组的公共解、同解等问题。参考资料来源:百度百科-考研数二大纲参考资料来源:研招网-19考生如何有效备考考研数学线代?参考资料来源:研招网-2019考研数学:线性代数梳理

考研数学大纲 哪里找到?

裨灶
善否相非
现在15年的还没有(貌似9月出),给你个14年的,记得采纳哦数一大纲考试科目高等数学、线性代数、概率论与数理统计形式结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学  56%线性代数  22%概率论与数理统计[5]22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分内容数学函数、极限、连续考试要求1.理解函数的概念2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.向量代数和空间解析几何考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数微分学考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题.多元函数积分学考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).无穷级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.本回答被提问者和网友采纳

考研数学二考哪些内容,比例多少

鸨羽
阿米尔
总分150高数 约78%线代 约22%题型:填空与选择 约45% 简答(包括证明)约55%参考资料:考研大纲介绍

考研数学二的考试范围?

解其长剑
李四光
试卷内容结构:高等数学占 78%,线性代数占 22%。试卷题型结构为:单项选择题选题 8小题,每题4分,共32分。填空题 6小题,每题4分,共24分。解答题(包括证明题) 9小题,共94分。根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。须使用数学二的招生专业:工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。扩展资料命题原则:1、科学性与公平性原则。作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。2、覆盖全面的原则。考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。3、控制难易度的原则。考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。4、控制题量的原则。考研数学试题的题量控制在20-22道之间(一般6道填空题,6道选择题,10道大题),保证考生基本能答完试题并有时间检查。参考资料来源:百度百科——考研数学

考研数学二大纲是不是每年都差不多啊?

暴风犬
爱情树
可以这么说像数学这东西几十年也没有什么变化的这几天数学二的考纲好像就是从06年多了二次型别的什么变化都没有的

考研数学考纲一考纲二有什么区别?

耦立
黄金雀
楼上说的不对 高数上数学二少了1/3的考点 同济书上每章最难的几节 和空间解析几何、曲面积分、无穷级数 这些都是不考的 换句话说 重点是上册 是计算能力 考一百三四十分的比比皆是。数学一对逻辑思维要求就比较高了 要重理解而不是狂做题 所谓的考研数学难就是指数一 分数相应也下来了。线代一样。概率不考。考数学二的专业很少 一般是化工 轻工 环境 食品类。80%以上的工科专业都考数学一。这就是为什么考化工(数二)、经管(数三)分数很高 而大多数工科专业分数低的原因。大同小异

考研数学1包括哪些内容

在梦中
挠挑无极
考研数学从卷种上来看是分为数学一、数学二和数学三,从所考难度、考试范围及适用专业这几个方面,能很好的区分考研数学一、二、三,请同学一定要注意。就所考范围:数一与数三在题目类型的分布上是一致的,1-4、9-12、15-19属于高等数学的题目,5-6、13、20-21属于线性代数的题目,7-8、14、22-23属于概率论与数理统计的题目;而数学二不同,1-6、9-13、15-21均是高等数学的题目,7-8、14、22-23为线性代数的题目。也就是说数学一和数学三会考高等数学、线性代数、概率论与数理统计,数学二只考高等数学、线性代数。可以从上面的题型分布看出:1、线性代数数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,唯一不同的是数一的大纲中多了向量空间部分的知识,不过通过研究近五年的考试真题,我们发现对数一独有知识点的考察只在09、10年的试卷中出现过,其余年份考查的均是大纲中共同要求的知识点。所以根据以往的经验来看,今年的考研数学中数一、数二、数三线性代数部分的题目也不会有太大的差别!2、概率论与数理统计数学二不考察,数学一与数学三均占22%,从历年的考试大纲来看,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件,广大的考研学子们都知道大纲中的“了解”与“掌握”是两个不同的概念,因此,建议广大考研党在复习概率这门学科的时候一定要对照历年的考试大纲,不要做无用功!3、高等数学数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。由于考察的内容比较多,故我们只从大的方向上对数一、二、三做简单的区别。以同济六版教材为例,数一考察的范围是最广的,基本涵盖整个教材(除课本上标有*号的内容);数二不考察向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数;数三不考察向量空间与解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。就难度而言:数学一和数学三不相上下,都不容易,数学二相对来说要简单就适用专业:数学一主要适用于理工学类,数学二适用于农、林、地、矿、油等专业,数学三适用于经济学及管理学类。综上所述:如果学的是自动化,是要数学一,数学一所考范围已经在上面的内容作了详细的阐述。数学一是这三类里面最难的一类,请不要忽视,加油!祝金榜题名!

考研的数学一和数学二是大学课程的高等数学一、二吗?

监照下土
蒙面侠
不是--前者难==前者包括了后者的一大部分而数学一考察的范围比数学二更深数学一难于数学二数学一 高等数学 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立” 删减知识点:无 (二)考试要求的变化 考试要求没有变化 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“基本初等函数的导数导数和微分的四则运算”调整为“导数和微分的四则运算基本初等函数的导数” 删减知识点:无 (二)考试要求的变化 1.考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 2.将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。 三、一元函数积分学 (一)考试内容的变化 新增知识点:增加了“用定积分表达和计算质心” 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求没有变化 四、向量代数和空间解析几何 无变化 五、多元函数微分学 无变化 六、多元函数积分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“二重积分、三重积分的概念及性质二重积分、三重积分的计算和应用”调整为“二重积分与三重积分的概念、性质、计算和应用” 删减知识点:无 (二)考试要求的变化 考试要求没有变化 七、无穷级数 无变化 八、常微分方程 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念” 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系”调整为“理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系” 四、线性方程组 无变化 五、矩阵的特征值和特征向量 无变化 六、二次型 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法” 概率论与数理统计 一、随机事件和概率 无变化 二、随机变量及其分布 无变化 三、二维随机变量及其分布(改为“多维随机变量及其分布”) (一)考试内容的变化 新增知识点:无 调整知识点: (1)将“二维随机变量及其概率分布”调整为“多维随机变量及其分布”; (2)将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度”; (3)将“两个随机变量简单函数的分布”调整为“两个及两个以上随机变量简单函数的分布” 删减知识点:无 (二)考试要求的变化 (1)将“1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质”调整为“1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质”, (2)将“2.理解随机变量的独立性及不相关的概念,掌握离散型和连续性随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件”, (3)将“4.会求两个随机变量简单函数的分布”调整为“4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布” 四、随机变量的数字特征 无变化 五、大数定律和中心极限定理 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 (1)将“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)”调整为“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)”; (2)将“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布的中心极限定理)”调整为“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)” 六、数理统计的基本概念 无变化 七、参数估计 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 将“4.了解区间估计的概念”调整为“4.理解区间估计的概念” 八、假设检验 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 将“2.了解单个及两个正态总体的均值和方差的假设检验”调整为“2.掌握单个及两个正态总体的均值和方差的假设检验” 数学二 高等数学 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立” 删减知识点:无 (二)考试要求的变化 考试要求没有变化 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“基本初等函数的导数导数和微分的四则运算”调整为“导数和微分的四则运算基本初等函数的导数” 删减知识点:无 (二)考试要求的变化 1.考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 2.将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。 三、一元函数积分学 (一)考试内容的变化 新增知识点:增加了“用定积分表达和计算质心” 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求没有变化 四、多元函数微积分学 无变化 五、常微分方程 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念” 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 (一)考试内容的变化 新增知识点:向量的内积线性无关向量组的正交规范化方法 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中增加“5.了解内积的概念,掌握线性无关向量组的正交规范化的施密特(Schmidt)方法” 四、线性方程组 无变化 五、矩阵的特征值和特征向量 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 1.将“2.了解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”调整为“2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵” 2.将“3.了解实对称矩阵地特征值和特征向量的性质”调整为“3.理解实对称矩阵地特征值和特征向量的性质” 数学三 微积分 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立” 删减知识点:无 (二)考试要求的变化 1.考试要求中将“9.了解连续函数的性质合初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用”调整为“9.了解连续函数的性质合初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质” 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将导数的概念及运算法则与微分的概念及运算法则合并 删减知识点:无 (二)考试要求的变化 1.考试要求中“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法”调整并合并为“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数”。 三、一元函数积分学 无变化 四、多元函数微积分学 无变化 五、无穷级数 无变化 六、常微分方程与差分方程 (一)考试内容的变化 新增知识点:线性微分方程解的性质及解的结构定理 调整知识点:无 删减知识点:无 (二)考试要求的变化 无变化 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系”调整为“理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系” 四、线性方程组 无变化 五、矩阵的特征值和特征向量 无变化 六、二次型 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法” 概率论与数理统计 一、随机事件和概率 无变化 二、随机变量及其分布 无变化 三、多维随机变量及其分布 (一)考试内容的变化 新增知识点:无 调整知识点:将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度” 删减知识点:无 (二)考试要求的变化 1.考试要求中将“2.理解随机变量的独立性及不相关的概念,掌握离散型和连续性随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件” 四、随机变量的数字特征 无变化 五、大数定律和中心极限定理 无变化 六、数理统计的基本概念 无变化 七、参数估计 无变化 八、假设检验 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 1.将“2.了解单个及两个正态总体的均值和方差的假设检验”调整为“2.掌握单个及两个正态总体的均值和方差的假设检验” 数学四 微积分 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 1.考试要求中将“9.了解连续函数的性质合初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用”调整为“9.了解连续函数的性质合初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质” 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将导数的概念及运算法则与微分的概念及运算法则合并 删减知识点:无 (二)考试要求的变化 1.考试要求中将原来的“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法”调整并合并为“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数”。 2.将“9.掌握函数作图的基本步骤和方法,会作简单函数的图形”调整为“9.会作简单函数的图形”。 三、一元函数积分学 无变化 四、多元函数微积分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“无界区域上简单二重积分的计算”调整为“无界区域上的广义二重积分” 删减知识点:无 (二)考试要求的变化 1.考试要求中将“5.……会计算无界区域上的较简单的二重积分”调整为“5.……了解无界区域上的较简单的广义二重积分并会计算” 五、常微分方程 无变化 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 无变化 四、线性方程组 无变化 五、矩阵的特征值和特征向量 无变化 概率论与数理统计 一、随机事件和概率 无变化 二、随机变量及其分布 无变化 三、多维随机变量及其分布 (一)考试内容的变化 1.新增知识点:无 2.调整知识点:将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度” 3.删减知识点:无(二)考试要求的变化 1.考试要求中将将“2.理解随机变量的独立性及不相关的概念,掌握随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件” 四、随机变量的数字特征 无变化 五、中心极限定理 无变化 下面网站可以下载大纲==2006考研数学大纲变化(完全版) 参考资料:http://www.stu8.cn/showdown.asp?soft_id=208