欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一大纲

是欺德也
一函数、极限、连续考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求:1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系. 2了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率圆 曲率半径考试要求:1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当时,f(x)的图形是凹的;当f``(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径三考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义反常(广义)积分 定积分的应用考试要求:1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解广义反常积分的概念,会计算广义反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值等.四考试内容: 向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程考试要求:1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五考试内容:多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用考试要求:1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六考试内容: 二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求:1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等).七考试内容:常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数 考试要求:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握、、、和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式.八考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程简单应用考试要求:1.了解微分方程及其阶、解、通解、初始条件和特解等概念.(调整前知识点:了解微分方程及其解、阶、通解、初始条件和特解等概念.)2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列方程:,和. 5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.一行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵等价 分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向星空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四线性方程组考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五矩阵的特征值及特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法一随机事件和概率考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二随机变量及其分布考试内容:随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为 5.会求随机变量函数的分布.三多维随机变量及其分布考试内容:多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求: 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.大纲没啥用,数一你就看书吧,高数上下同济的,还有线代,概率,挨盘看,星号的应该不用看,都得考,把基础打好才是王道。

请问在哪儿可以看数三的考试大纲啊?

黑屁股
开以阴阳
很荣幸能为你解答!2011考研数学三大纲考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构试卷满分为150分,考试时间为180分钟答题方式为闭卷、笔试三、试卷内容结构:微积分 56%;线性代数 22%;概率论与数理统计 22%。四、试卷题型结构:单项选择题选题 8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分微 积 分一、函数、极限、连续考试内容:函数的概念及表示法 函数的有界性单调性周期性和奇偶性 复合函数反函数分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 、 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求 :1理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 2了解函数的有界性单调性周期性和奇偶性 3理解复合函数及分段函数的概念,了解反函数及隐函数的概念4掌握基本初等函数的性质及其图形,了解初等函数的概念5了解数列极限和函数极限(包括左极限与右极限)的概念6了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7理解无穷小的概念和基本性质掌握无穷小量的比较方法了解无穷大量的概念及其与无穷小量的关系 8理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理介值定理),并会应用这些性质二、一元函数微分学考试内容:导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数反函数和隐函数的微分法 高阶导数  微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性拐点及渐近线 函数图形的描绘 函数的最大值与最小值  考试要求  1理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程  2掌握基本初等函数的导数公式导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数  3了解高阶导数的概念,会求简单函数的高阶导数  4了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分  5理解罗尔(Rolle)定理拉格朗日( Lagrange)中值定理了解泰勒定理柯西(Cauchy)中值定理,掌握这四个定理的简单应用  6会用洛必达法则求极限  7掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用  8会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线  9会描述简单函数的图形  三、一元函数积分学  考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用  考试要求  1理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法  2了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法  3会利用定积分计算平面图形的面积旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题  4了解反常积分的概念,会计算反常积分  四、多元函数微积分学  考试内容:多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值最大值和最小值 二重积分的概念基本性质和计算 无界区域上简单的反常二重积分  考试要求  1了解多元函数的概念,了解二元函数的几何意义  2了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质  3了解多元函数偏导数与全微分的概念,会求多元复合函数好的,谢谢中国考研网,考试大纲,百度上有现成的,自己百度吧,好的,谢谢

考研数学一大纲教程有没有?

背诵者
秋水时至
淘宝买就可以了或者学校周围的书店一般都有卖的价格不会很贵

考研数学复习大纲和李永乐复习全书看哪本

金板寸
梦男孩
我在网上找的满分数学的童鞋的方法,希望对你有帮助!!(一) 复习方法(1)通读教材 三月份到五月中旬是我选择的通读教材的时间。看教材要做到细致,要对基本概念基本定理有充分的理解,最好还要弄懂每个定理的证明,我认为这些定理的证明过程对培养缜密的思维逻辑和良好的思维习惯非常有帮助,最重要的是要做课后的练习,课后练习题是对基本概念基本定理最基础的拓展和应用。当然,说到这儿,一本全面细致的教材课后习题答案就成为必备了(2)选好基础习题集经过两个月至三个月的精读教材,相信不少同学对数学已经颇具感觉,这时候需要用做题来巩固这种感觉才能加深对概念定理的理解,使数学解题能力再上一层。在这个阶段,我认为练习题不能过难,否则会极大打击前一个阶段建立的信心,但过于简单又无法领悟研究生入学考试数学科目的难度。在这个阶段我选择的习题是《复习指南》,也有一些人推荐李永乐老师的《复习大全》,但由于我没有读过所以不敢妄加评论,只说一下对《复习指南》的看法。有些人说《复习指南》的解题方法太注重技巧,我没有此种感觉,反倒觉得书中的一些思维定式或者说固定的思维方向对于应试数学非常有用,一直觉得应试数学相对其他科目比较机械,没有什么可以主观发挥的东西,因此只要学会了那种固定的思维方法,应试数学就很容易了。 我看第一遍《复习指南》的时间在五月中旬至七月上旬,其实看第一遍还是很费劲和痛苦的,速度很慢,有些题目也想不清楚,现在想想如果当时找个学伴,两个人互相督促和交流,效果可能更好些。看第一遍《复习指南》应该注意两点:一是切忌光看不练,书中例题多,习题少,而且习题的答案也不详细,因此最重要的是例题,最好每道例题都动手做一做,对于巩固所有知识点、提高解题能力是大有裨益的;二是要对不同程度的例题作出标记——有一些很快就能做出来,有些想很久才能做出来,也有些看了答案才恍然大悟,对不同的题要做不同的处理和注释,这样再看第二遍的时候才不至于简单的重复,才能做到有的放矢。(3)巩固基础、熟悉真题 8月份至考研前这段时间,我基本上都是处在不断地通过做题来加强数学解题能力的复习状态中,熟悉真题和大量做模拟题自然必不可少。我参加的那个班级的授课老师是黄先开老师、陈文登老师和曹显兵老师,其中黄先开老师讲授了大部分的高数和全部的线性代数,陈文登老师讲授了一部分高数,概率主要是由曹显兵老师讲的。近来也有些师弟师妹问我哪些老师讲得好,其实我觉得这些老师讲得都非常好,只是哪些老师的授课风格更适合自己而已。我很喜欢我选择的这个组合,因为非常适合我,黄老师的授课风格非常严谨,逻辑性也很强,而且讲课中没有一句与数学无关的话,效率很高,也使我受益匪浅。考研班结束后,我的数学笔记记了满满一厚本,在后来的复习中,数学笔记也是给了我很大的帮助,但让我收获最大的是考研班的学习气氛给了我很大的压力和动力,让我在那个炎热的夏天振作起来以更饱满的精神投入考研复习中。第二,关于模拟题的选择问题。现在大家比较推崇的模拟题主要是四百题和陈老师的模拟题,我只做过前者。凭心而论,四百题真的很难(我最后的成绩也只是在120分左右),以至于我在拿到考研试卷的时候都觉得考研题太简单而不敢相信。四百题为前期模拟题。在复习数学的最后阶段,应该选择与真题难度相近的模拟题。而且要保证天天都做题,这样才会在考试时更快的进入状态。第三,总结自己的错题集十分必要。这一点是我和很多考研战友交流之后得出的结论。在复习后期,将数学笔记和错题集常常拿出来温习成为我周围很多人的习惯。事实证明他们在考研中也取得了很不错的成绩。因此我觉得这种方法也比较值得借鉴。 (二) 心路历程 曾经一位师姐对我说她考研的时候,有一天突发奇想,“地球是如何自转起来的呢”,牛顿说过“是上帝踢了地球一脚”,于是她就想“要是上帝踢我一脚该多好啊”。那时她对我说起上面这段话时,我十分不理解她的意思。后来自己成为考研大军中的一员时,才体会了她的心境——无助,还是无助。其实,在考研中,有时候心情是很不平静的,甚至是波涛汹涌的,会因做不出题而沮丧,会因做错题而苦恼,会因效率低而郁闷,会因很多小事甚至是道听途说的传言而彷徨无助。我想对大家说的是,每个人都会面对这样的问题,而非某一个人心理素质不好或是其他。无论怎样的荆棘道路,我们都一起走过;无论怎样的郁闷心情,我们都一起经历;只是我们不曾相识。因此,朋友,不要理会那些不平静的心情,矢志不渝地走下去,成功属于每个为之不懈努力追求的人! 希望以上冗杂的文字能给那些正在斟酌是否要考研的朋友们一点启示,更希望能给已经准备考研的朋友些许帮助。登山则情满于山,观海则意溢于海,相信只要全力付出,每个人都可以实现自己的梦想!如果你想拔高,前提是你掌握了高数的基本知识,那就看一下陈文灯的,他是通过总结做题方法,而且就题目来讲,陈的全书里面题的难度相对高一点,能够用充足的时间把这本书看透,掌握到其做题的方法而不是只背他的做题公式,融会贯通的话得高分一般就没问题了。李永乐的复习全书偏基础一点,多做几遍是一种牢固掌握考试要点的方法,但是难度相对陈文灯的简单一点。 希望你能好好分析下,做好复习计划,然后选好的方式复习。千万掌握好时间,能坚持,不偷懒。加油!

数学二大纲在哪里看?

天和将至
萧琛
一般的书店可能会有,或者看看教育部网站

请问考研数学大纲在哪里可以查到,要权威一点的网站,教育部可以么?

门无鬼曰
彼故鬻之
可以吧,你可以进入中国研究生招生信息网或者去书店买本书,李永乐系列的还不错,那本数学大纲里面的内容很好,其实这几年的考研数学大纲都没怎么变,可依靠上届的大纲复习。

数学专业课 应该怎么看考研大纲

万物亦然
荀卿
数学专业考试看非数学专业类考研大纲是没有用的(注意到英语大纲下面就写了个非英语专业,数学大纲下面也应该写,但是数学没有英语有地位所以省略了).数学专业考试要问清楚所报考院校有没有公开,或者是对内的专业辅导课程,如果有的话一定要去上,时间不允许也要要份笔记,最次也要搞一套出题老师当时讲课时的笔记.数学专业考试内容太多,除非你真的真的很明白了,否则还是应该在复习的时候有点重点.拿数分来说,基米是很全,但是你觉得6本书来得及看么?看完思路也不一定适应考试。所以应该搞清楚出题人的风格。如果考系统所或者其他研究机构(没有本科生)的话,应该找历年真题分析,了解报考地要求什么样的广度和深度。你只要将你要考学校所指定的教材好好多看几遍,将专业课历年真题中的每一道习题都弄明白怎么做就差不多了.我们学校考数学专业的学长们都是这样做的,数学高分主要还是要靠自己勤学苦练.祝你考研顺利.

谁知道2012考研数学1大纲何时出来啊

王有所成
杀人曲
2011年暑假左右 你先用2011年的 一般变化不大今年是8月份,应该是暑假期间

考研数学大纲的问题

情人石
独行客
不用等考试大纲,每年变化都很小的。你考数学二,买本李永乐的数学二复习全书就可以了。等考试大纲出来以后再看看就可以了,应该没什么实质性的变化。无穷级数是数一考,数二不考。而且数二比数一内容要少很多大纲要八月份才能出,但每年数学大纲只有微调。