欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

研究生考试中数学一与数学二有什么具体的区别?

问仁
不受于外
数学一: 高等数学约56 % 线性代数约 22 % 概率论与数理统计约22 %  数学二: 高等数学约78 % 线性代数约22 %数学一或二具体划分:轻工、纺织、食品、农林考数学二;化学工程、材料工程、环境工程、石油天然气工程、地质矿业工程可根据本专业对数学的要求选择选择数学一或二;其他各类专业(包括授工学学位的管理科学与工程一级学科)必须考数学一。拓展资料:考研科目又有那些呢?必考科目:专业课、英语、政治。具体为:考研初试共五科,满分为500分。各个专业考试科目不同,一般为政治+英语+2门专业课(或者数学+1门专业课),不是所有专业都考数学的。理科及管理类一般都考,具体考试科目请参考自己拟报考招生院校历年招生专业目录。全国统考公共课有政治(满分100分)、英语(满分100分)、数学(一、二、三)(满分150分)。全国统考专业课有心理学、教育学、历史学、农学、计算机科学与技术(满分均为150分)。除此之外,其它专业课均为招生院校自主命题、阅卷。

考研数学一和二在难度上有什么区别?

九个吻
礼乎
数学一:包含线代,高数,概率。适用的学科为:1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业. 3.管理学门类中的管理科学与工程一级学科按此划分,绝大多数院校的计算机专业都会选择考数学一,这也是从事计算机所必须的最低数学功底。数学二:包含线代,高数。适用的学科为:1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业. 数学三:常被称为经济数学,包含线代,概率,高数。适用学科为:1.经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业. 2.管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业. 3.管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业数学四:包含线代,概率,高数,但是考核内容要不同于数学一,具体可参见大纲。适用学科为:经济学门类中除上述规定的必考数学三的二级学科、专业外,其余的二级学科、专业可选用数学三或数学四;管理学门类的工商管理一级学科中除上述规定的必考数学三的二级学科、专业外,其余的二级学科专业可选用数学三或数学四.管理学门类的农林经济管理一级学科中对数学要求较低的二级学科、专业具体还要看你报考学校的招生中考试数学科目 、

考研数一与数二的区别是什么?

米兰达
阿尼纳
1.考研数学一考试科目有:高等数学、线性代数、概率论与数理统计。考试内容比较多、全面、题目设置有一定难度。在试卷内容中,各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。2.考研数学二考试科目有:高等数学、线性代数。其中高数部分删去的较多,相对数一来说要简单很多。在试题中,各科目所占比例为:高等数学78%、线性代数22%。3.数学一主要是针对报考理工科的考生。适用的招生专业为:(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。(2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.(3)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。4.数学二主要是针对农、林、地、矿、油等专业的考生,适用的招生专业为:(1)工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。(2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.

考研数学二包括哪些内容

通于万物
数学二考试大纲及要求试卷结构 (一)题分及考试时间 试卷满分为150分,考试时间为180分钟. (二)内容比例 高等教学 约80% 线性代数 约20% (三)题型比例 填空题与选择题 约40% 解答题(包括证明题)约60%. 全国硕士研究生入学考试 数学二考试大纲 [考试科目] 高等数学、线性代数、 高等数学. 一、 函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念. 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容. 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4. 会求分段函数的一阶、二阶导数. 5.会求隐函数和由参数方程所确定的函数以及反函数的导数. 6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理. 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.掌握用洛必达法则求未定式极限的方法. 10.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用 考试要求 1.理解原函数概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式. 5.了解广义积分的概念,会计算广义积分. 6.了解定积分的近似计算法. 7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法. 五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程简单应用 考试要求 1.了解微分方程及其解、阶、通解、初始条件和特解等概念. 2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程. 3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y'). 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题. 线性代数 一、 行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质. 2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.理解n维向量的概念、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.会用初等行变换求解线性方程组. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵转化为相似对角矩阵. 3.了解实对称矩阵的特征值和特征向量的性质

考研数学一和数学二有什么区别?都是什么专业考数一,什么专业考数二呢?

麋与鹿交
长濑
考研数学针对不同专业的考生有不同的考试内容,我们在复习考研数学之前首先要搞清楚考研数学一二三的区别。

考研数学一二三有什么区别

孰为圭璋
傲娇
考研数学针对不同专业的考生有不同的考试内容,我们在复习考研数学之前首先要搞清楚考研数学一二三的区别。

考研中,哪类专业考数学二?

轮回
嵇康
工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。扩展资料:复习技巧1、不间断在进入考研备考阶段,数学复习就没有间断过,基本每天都可以保证3个小时复习数学。数学靠的是日积月累,但考研的时间毕竟有限,不可能天天泡在数学里,所以温馨提示靠每天的短暂时间来复习,这样日积月累,不仅时间不少,而且效果还更明显。2、重视教材数学复习的第一步就是读教材,复习过程中,也看到有的同学一上来就是辅导书,但坚持了一个多月,他们不得不再次回到教材上,这样不仅浪费了时间,而且也容易让自己变得浮躁。教材是基础,是数学复习中必须重视的知识,所以一定要把握,并好好利用。当通过教材掌握了基础的定理、原理、公式,接下来就要认真做教材后面的题目,这是检验你对基础掌握的情况,如果遇到不会的题目或做错的题一定要真正分析、总结。最好准备一个错题本,它在后期复习中起的作用远远超过我的想象。3、做题训练当教材复习到一定程度后,考生应该根据自己的情况选择一本辅导书。并且要做题,而且是猛做。这个时候做起来就比较顺手了,开始基本上70%的题会做,不会的不要只看一遍答案就过了,一定要自己“会”做,不要出现一看题目就说:“我见过,在XXX书上,但是不会做”。考研资料都大同小异,过多的追求新资料,不仅在经济上是一种负担,而且还会大量的出现重复的题目和题型,而因为你见过,所以觉得不难,会给人一种“数学很简单”的错觉。可取的方法是对一两本书反复研究,总结规律。新的题目是用来检验你的研究成果的。4、辅导班在考研数学整个复习过程中,提示考生一定要重视历年真题,而且最好能通过真题推断出将要考试题目或重点,这样做需要一定是水平和经验。如果考生只靠自己,很可能既浪费了时间,还把握不准,所以最好选个比较有名气的辅导班,靠老师的力量给以帮助,而且最后的冲刺和点睛最好。参考资料来源:百度百科-考研数学

考研数学一和数学二哪个更难?

寄之
题主你好:这个不好说,首先数学一和数学二的考试范围不一样。数学一考查的内容有高等数学,线性代数以及概率与统计。数学二只有高等数学和线性代数。3.数学一主要是考查的内容多,比较杂,数学二考查的内容相对少(高等数学中的无穷级数,曲面积分等内容都没有考查),但是难度较大。在高等数学这部分,数学二的一般要比数学一的难。因为考查的内容少,只有加大难度。4.至于那个容易拿高分,关键看自己,若你能全抓知识点广,但是深度这方面有点欠缺,建议你选数学一。若你思考的深度还可以,但是太多内容掌握起来不是很有把握,建议你可以选择数学二。抓紧复习!祝你成功!!

考研数学二知识点总结

扶桑
靓妹仔
考研数学大纲内容 数二高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.