欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学考什么内容?

天生万民
其知情信
数一:高等数学、线性代数、概率论与数理统计。数二:高等数学、线性代数。数三:微积分、线性代数、概率论与数理统计。官方电话官方服务官方网站

考研数学一二三怎么区别?

传染
短片版
数学一是考研数学一是考研数学中难度最大,范围最广的。数学一的考试科目包括高等数学、线性代数、概率统计三科。其中高等数学占比百分之五十六;线性代数占比百分之二十二;概率统计占比百分之二十二;数学二是考研数学二是考研数学中考试范围最小,但是高等数学占比最高的。考研数学二的考试科目包括高等数学和线性代数其中高等数学占比百分之七十八;线性代数占比百分之二十二。数学三是考研数学三是考研数学中考试难度较简单的。考研数学三的考试科目与数学一完全一样,各科目的分值占比也与考研数学一完全一样。但是难度相对于考研数学一而言较为简单。这三者区别是:1、数学一考得比较全面,高数,线代,概论都考,而且题目偏难。2、数二不考概论,而且题目较数学一容易。3、数三考得也很全面,题目的难度不比数一简单多少。4、在专业方面,工学类专业的为数一、数二,学校的不同限定了究竟是考数一还是数二,经济学和管理学类专业的为数学三。5、在难度方面,数一最难,其次是数二,最后是数三。数三照比前两者是稍微简单些,但是考研数学毕竟是考研数学,难度都不容小觑。6、数学一需要学习的内容最多,高数,线性代数以及概率都要考,其中的考点也考察的很全面,书中删减的,不需要学习的内容特别少。7、数学二只考察高数和线性代数两本书,但是其中考题的难度是很大的。8、数学三考察的书目与数学一相同,其中有一些数一学习考察的内容数三是不需要掌握的,但是数学三与数学一需要学习的内容是相当之多的,而数学二虽是少学了一本书的内容,但是难度却是很大的。扩展资料:根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。招生专业须使用的试卷种类规定如下:一、须使用数学一的招生专业1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程。测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2、授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1、经济学门类的各一级学科。2、管理学门类中的工商管理、农林经济管理一级学科。3、授管理学学位的管理科学与工程一级学科。参考资料来源:百度百科-考研数学

考研数学的数一数二数三是什么意思

容闳
猫娘
  考研的数一数二数三:  一、考试科目  考研数学一的考试科目有:高等数学、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。  考研数学二的考试科目有:高等数学、线性代数。在试题中,各科目所占比例为:高等数学78%、线性代数22%。  考研数学三考试科目有:微积分、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。  从上述对比中不难看出,数一、数二、数三最大的区别是数学二缺少了概率论与数理统计,而数一和数三不论考试科目还是分值比例都是相同的。  二、试卷结构  考研数学一、二、三在试卷中的题型结构都是一样的。分别为:单项选择题8小题,每题4分,共32分;填空题6小题,每题4分,共24分;解答题(包括证明题)9小题,共94分。  三、考试内容  数一、数二、数三在考试内容上的差别主要体现在考查范围上,其中数学一考查范围最广,数学二考查范围最窄。  具体来说,在高等数学中,数一、数二、数三的主要区别在于:空间解析几何、多元函数积分学(二重积分以外),仅数学一考查;无穷级数,仅数学一、数学三考查;微积分的物理应用,仅数学一、数学二考查;微积分的经济学应用,仅数学三考查。  在线性代数中,数一、数二和数三的考试内容和要求几乎一样,唯一的区别是数学一多了向量空间的内容,这部分考点在考试中涉及得很少,对考生的复习没有实质性影响。  在概率论与数理统计中,数学一的考试范围比数学三略大,主要增加了参数估计部分的考点,包括估计量的评选标准、区间估计以及后续的假设检验。  除了考查范围上的区别以外,在都考查的部分,数一、数二、数三对具体考点的要求基本上是一致的。同时,由于数学二在高等数学中的考查范围较小、而考的分值又最大,这就导致数学二在高等数学部分的考查相当于数一和数二更细致、更全面、同时也更灵活。但总的来说,数一、数二、数三在共有考点的要求上的区别并不明显,不需要加以区分。

考研数学二包括哪些内容

解其长剑
鬼赌鬼
数学二考试大纲及要求试卷结构 (一)题分及考试时间 试卷满分为150分,考试时间为180分钟. (二)内容比例 高等教学 约80% 线性代数 约20% (三)题型比例 填空题与选择题 约40% 解答题(包括证明题)约60%. 全国硕士研究生入学考试 数学二考试大纲 [考试科目] 高等数学、线性代数、 高等数学. 一、 函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念. 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容. 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4. 会求分段函数的一阶、二阶导数. 5.会求隐函数和由参数方程所确定的函数以及反函数的导数. 6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理. 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.掌握用洛必达法则求未定式极限的方法. 10.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用 考试要求 1.理解原函数概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式. 5.了解广义积分的概念,会计算广义积分. 6.了解定积分的近似计算法. 7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法. 五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程简单应用 考试要求 1.了解微分方程及其解、阶、通解、初始条件和特解等概念. 2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程. 3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y'). 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题. 线性代数 一、 行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质. 2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.理解n维向量的概念、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.会用初等行变换求解线性方程组. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵转化为相似对角矩阵. 3.了解实对称矩阵的特征值和特征向量的性质

考研数一数二的是什么意思?

独生子
梦想
和数学关系紧密的专业,专业课要考数学的。数学一是针对工科类学科数学二是针对理学类学科数学三是针对管理,经济类学科难度依次递减。一般情况下是这样划分,具体考数学几要以你报考学校的招生简章为准。不同的专业考的数学是不同的。不同专业考的数学是不同的。 (一) 需要考数学一的专业 工学门类的力学,机械工程,光学工程,仪器学与技术,冶金工程,动力学工程及工程物理,电气工程,电子科学与技术,信息与通信工程,控制科学与工程,计算机科学与技术,土木工程,水利工程,测绘科学与技术,交通运输工程,船舶与海洋工程,航空宇航科学与技术,兵器科学与技术,核科学与技术,生物医学工程等一级学科中所有的二级学科、专业。 工学门类的材料与工程,化学工程与技术,地质资源与地质工程,矿业工程,石油与天然气工程,环境科学与工程等一级学科中对数学要求较高的二级学科、专业。 管理学门类中的管理科学与工程一级学科。 (二) 需要考数学二的专业 工学门类的纺织科学与工程,轻工食品科学与工程等一级学科中所有的二级学科、专业。 工程与天然气工程,环境科学与工程等一级学科中对数学要求较低的二级学科、专业。 (三) 需要考数学三的专业 经济学门类的应用经济学一级学科中的统计学,数量经济学二级学科、专业。 管理学门类的工商管理一级学科中企业管理,技术经济管理二级学科、专业。 管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业。参考资料:考~研~教~育~网

考研数一与数二的区别是什么?

厩焚
非知失也
1.考研数学一考试科目有:高等数学、线性代数、概率论与数理统计。考试内容比较多、全面、题目设置有一定难度。在试卷内容中,各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。2.考研数学二考试科目有:高等数学、线性代数。其中高数部分删去的较多,相对数一来说要简单很多。在试题中,各科目所占比例为:高等数学78%、线性代数22%。3.数学一主要是针对报考理工科的考生。适用的招生专业为:(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。(2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.(3)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。4.数学二主要是针对农、林、地、矿、油等专业的考生,适用的招生专业为:(1)工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。(2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.

考研数一和数二哪个难

介绍信
爱简单
一般来说数一最难,数一数一在三个当中难度是最大的一个,首先是它考的内容比数二数三多一些,其次就是试题的难度和深度大一些。数一要考的内容有:高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间几何、多元函数微积分学、级数、常微分方程。线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型概率论与数理统计:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验。对于考数一的专业也是和数二、数三不同的。大部分考数一的都是学术型专业。力学、机械工程、光学工程、仪器科学与技术、动力工程、电气工程、控制科学与工程等等专业。数二数二相对于数一在内容上少了一个科目是概率,难度比数一稍低比数三稍高。数二要考的内容有:高数:极限、导数与导数的应用、中值定理、不定积分、定积分、定积分的应用、多元函数微分学、二重积分、常微分方程。线代:行列式、矩阵、向量组的相关性与秩、线性方程组、特征值和特征向量考数二的一般都是专硕,当然也有一些专硕的是考数一的。纺织科学与工程、轻工技术与工程、农业工程、林业工程、控制工程、集成电路、通信工程等等。

考研数学二包括哪些内容

麻雀侠
论则贱之
考研数二的大纲可能每年有些许变动。以当年发布的数二大纲为准。今年的大纲内容较多,详细的内容有5页文档,可以在文库查看。例如:一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限等。今年的题型和分值分布大致如下:2017考研数学(二)考试大纲 考试科目:高等数学、线性代数 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 高等教学 约78% 线性代数 约22% 四、试卷题型结构 试卷题型结构为: 单项选择题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题) 9小题,共94分

研究生考试中数学二主要考试内容包含哪些?

观于大海
王有所成
1、考研科目数学二的主要内容:(1)高数:极限、导数与导数的应用、中值定理、不定积分、定积分、定积分的应用、多元函数微分学、二重积分、常微分方程。(2)线代:行列式、矩阵、向量组的相关性与秩、线性方程组、特征值和特征向量。2、考数二的一般都是专硕,当然也有一些专硕的是考数一的。纺织科学与工程、轻工技术与工程、农业工程、林业工程、控制工程、集成电路、通信工程等等。扩展资料:1、数一要考的内容有:高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间几何、多元函数微积分学、级数、常微分方程。线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率论与数理统计:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验。对于考数一的专业也是和数二、数三不同的。大部分考数一的都是学术型专业。力学、机械工程、光学工程、仪器科学与技术、动力工程、电气工程、控制科学与工程等等专业。2、数三要考的内容有:高数:函数、连续、一元函数微积分学、多元函数微积分学、级数、常微分方程和差分方程线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验考数三的专业一般都是偏向文科性质的专业,经济类管理类较多。统计学、数量经济学、国民经济学、财政学、金融学、企业管理、技术经济及管理等等专业。参考资料来源:百度百科 - 考研数学二大纲