欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

研究生数学一考什么?哪些内容不需要考?

分裂人
振振有词
研究生数学3431363564一考什么,考生一定要参考考研数学一大纲。数学一的试卷内容结构为高等数学56%;线性代数22%;概率论与数理统计22%。具体考察内容:高等数学函数极限连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当f''(x)>0 时,f(x) 的图形是凹的;当f"(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.向量代数和空间解析几何考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数微分学考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.多元函数积分学考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).无穷级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握泰勒级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数第一章:行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.第二章:矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.第三章:向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.第四章:线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.第五章:矩阵的特征值及特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.第六章:二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率与统计第一章:随机事件和概率考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.第二章:随机变量及其分布考试内容:随机变量 随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为5.会求随机变量函数的分布.第三章:多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.第四章:随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.第五章:大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .第六章:数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.第七章:参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.第八章:假设检验考试内容显著性检验假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。2.掌握单个及两个正态总体的均值和方差的假设检验。

哪些专业考研不用考数学?

卦气
薄荷糖
百度上有啊 汉语言文学(文学语言学文字学)  历史  哲学版  新闻学  传播学权  播音主持  采访编辑  管理类方面(企业管理 金融管理工商管理要考数学;行政管理看情况而定)  图书管理学  劳动与社会保障  工业设计  服装设计  装潢设计(看学校而定)  园林设计(主要看农业学校而定)  艺术类(声乐、美术、体育)  医学类(看学校而定)  心理学(由学校而定 在应用心理学中需要考统计学)  社会学  法律  生物科学(由学校而定)  英语(科技英语有的学校要考)  民族学  宗教学  公共管理  政治  地质 教育学

考经济类的研究生有哪些科目不需要考数学

哈骚派
子来
会计来考源研是分为会计学硕和会计专硕,这两种统称为会计考研,但是所要考的数学内容是不同的。 会计专硕中所考的数学是在联考中的,也就是咱们所说的199管理类联考。 199管理类联考中所考的数学属于基础数学,所考内容是高中所学的数学知识,这个很简单。 会计学硕是咱们经常说的会计学,会计学考数学三。 考研数学三是考高等数学、线性代数、概率论与数理统计这三部分内容。 数学三满分150分,从试卷结构上来看,设有三种题型:选择题(8道共32分)、填空题(6道共24分)、解答题(9道共94分)。通过分析近些年考试大纲中给出的考点,数三是要求考173个考点,基础知识会占总分的70%,也就是150*70%=105分。同时也会有侧重点,数三要求掌握经济应用问题。 急速通关计划 ACCA全球私播课 大学生雇主直通车计划 周末面授班 寒暑假冲刺班 其他课程

哪些专业研究生考试不用考数学

而游无朕
其名鸳雏
所有的文科(包括文史哲和法律的)专业和文科性质的专业都不考数学的医学

研究生考试哪些专业不用考数学?

不肖则欺
假物
会计学专业、3431353339工商管理专业、公共管理专业、旅游管理专业、工程管理专业等。1、会计学专业会计学专业属工商管理学科,是一个应用性较强的专业。该专业设有企业会计、国际会计、注册会计师等三个专业方向。专业以企业会计为主,兼顾计算机与财务管理。在教学方法上强调理论与实践相结合的教学模式,提倡启发式与案例教学,多方位培养学生处理会计业务与管理财务的操作能力和创新能力。开设院校:浙江财经大学、浙江工商大学、杭州电子科技大学、宁波大学、浙江理工大学等。2、工商管理专业工商管理专业是研究工商企业经济管理基本理论和一般方法的学科,主要包括企业的经营战略制定和内部行为管理两个方面。工商管理专业的应用性很强,它的目标是依据管理学、经济学的基本理论,通过运用现代管理的方法和手段来进行有效的企业管理和经营决策,保证企业的生存和发展。开设院校:浙江大学、浙江工商大学、浙江工业大学、浙江理工大学、宁波大学等。3、公共管理专业公共管理专业旨在为政府部门和非政府机构以及企事业单位的人事和行政机构培养宽口径、复合型、应用型的公共管理高层次专门人才。公共管理专业旨在通过综合运用经济学、政治学、社会学等学科的知识培养学生对当前政府事务的综合分析能力。开设院校:浙江中医药大学、浙江大学、浙江师范大学、浙江工业大学、浙江工商大学、浙江财经大学等。4、旅游管理专业旅游管理专业是随着我国旅游经济的发展、旅游产业的发育而建立的一个新型学科。在中国,这门学科的产生只有二十多年的时间,但已成为管理学科体系中的一个重要的学科部门。该专业培养适应新形势旅游企事业单位需要的一线服务与管理类专门人才。开设院校:浙江大学、浙江工业大学、浙江师范大学、宁波大学、浙江工商大学、浙江海洋学院、浙江农林大学、杭州师范大学等。5、工程管理专业工程管理专业是新兴的工程技术与管理交叉复合性学科。该专业培养具备管理学、经济学、信息工程、土木工程等技术的基本知识,掌握现代管理科学的理论、方法和手段的复合型高级管理人才。开设院校:浙江工业大学、绍兴文理学院、浙江理工大学、浙江工商大学、浙江财经大学等。参考资料来源:百度百科-会计学专业参考资料来源:百度百科-工商管理参考资料来源:百度百科-公共管理专业参考资料来源:百度百科-旅游管理专业参考资料来源:百度百科-工程管理专业

哪些专业考研是不用考数学的?

如愚
故天下归
(一636f707962616964757a686964616f31333335326232)考研的整个程序有哪些 1.与学校联系,确定具体的学校、专业,获得具体的考试信息 如果确定了要考研,确定了要报考的大致学校和专业范围后,要和学校联系,获得最新的招生信息,要及时把握最新的学校里的动态。这样才不会无的放矢。 2.先期准备 获得了充分的专业课信息后,找到了完备的复习资料后,就该踏实看书复习了。既然选择了远方,便只顾风雨兼程。一旦确定了目标,便要义无反顾地投身到复习中。复习中,一定要脚踏实地,认认真真。 3.报名 报名时间一般在11月,这几年都是10-14号。在校生报名时由学校统一报名。在职人员报名一般在地市一级教委的高招办或者报考的学校,也可以异地报名,即因为出差等原因在外地报名和参加考试。 报名时填报报考学校和专业时可以填两个:第一志愿,第二志愿。研究生考试的专业课试题是各个招生单位自己命题,考生要按报第一志愿的试题来考试。 4.初试 初试一般在1、2月份的春节前1、2个星期。考试要持续2天,进行4门考试,每门考试3个小时,考试地点一般在地市一级教委高招办设立的考点,或者招生的高校,考生在报名时可以选择这两种考点。 5.调剂 大约在寒假过后,春季开学后1、2周,专业课成绩差不多就出来了,这个时候可以打电话向系里和研招办询问。再过1、2周,公共课的成绩也出来了。这以后到发复试通知的一段时间是很关键的,如果名次不是特别理想,录取在两可之间,就要多和报考单位(系里)和导师联系,实在不行就看有无可能读自费和委培,或者调剂到别的学校。 6.复试 复试一般在5.1前后,过去一般是等额面试,现在基本上都已改成差额面试。每年都有一部分考生在复试中折戟,因此竞争非常残酷。这就要求考生朋友们要精心准备面试,在面试中要有一个自信,从容的心态,这样才能果决、流畅地回答老师提出的问题。 7.录取 复试通过后,学校将发函到你的档案所在单位,将你的档案调往学校,审查没有重大问题后(主要是政治性问题),将会发放录取通知书,将你所有的关系,包括组织、户口、工资关系,转往学校(委培培养除外)。 我来具体说一下 汉语言文学(文学 语言学 文字学 ) 历史 哲学 新闻学 传播学 播音主持 采访编辑(都属新闻专业) 管理类方面(企业管理 金融管理 工商管理 要考数学;行政管理 看情况而定) 图书管理学 劳动与社会保障 旅游专业 (大部分不用考 看学校来定) 工业设计 服装设计 装潢设计(看学校而定) 园林设计(主要看农业学校而定) 艺术类(声乐、美术、体育) 医学类(看学校而定) 心理学(由学校而定 在应用心理学中 需要考统计学) 社会学 法律 生物科学(由学校而定) 英语(科技英语有的学校要考)【学习顶起】团队为您答题。有不明白的可以!如果您认可我的回答。请点击下面的【选为满意回答】按钮。 如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢!请采纳,谢谢【学习顶起】团队为您答题。有不明白的可以!如果您认可我的回答。请点击下面的【选为满意回答】按钮。 如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢!

考研有什么科目不用考数学?

粹之至也
巴斯德
【1】哲学  哲学学科门类,包含哲学1个一级学科,8个二级学科。其中不考数学的专业有:文化哲学[010120]、企业伦理学[010123]、马克思主义哲学[010101]、中国哲学[010102]、外国哲学[010103]、逻辑学[010104]、伦理学[010105]、美学[010106]、宗教学[010107]、科学技术哲学[010108]  【2】法学  法学门类,包含5个一级学科,31个二级学科,其中法学10个、政治学7个、社会学4个、民族学5个、马克思主义理论5个。法学门类中不考数学的专业有:法学[030101]、法律[030102]、宪法学与行政法学[030103]、刑法学[030104]、诉讼法学[030106]、经济法学[030107]、环境与资源保护法学[030108]、军事法学[030110]、政治学理论[030201]、中外政治制度[030202]、科学社会主义与[030203]、中共党史[030204]、国际政治[030206]、国际关系[030207]、外交学[030208]、社会学[030301]、人口学[030302]、人类学[030303]、民俗学[030304]、民族学[030401]、马克思主义民族化研究[030402]、中国少数民族经济.[030403]、中国少数民族史[030404]、中国少数民族艺术[030405]、马克思主义基本原理[030501、马克思主义发展[030502]、马克思主义中国化研究[030503]、国外马克思主义[030504]、思想政治教育[030505]、民商法学[030105]、国际法学[030109]   【3】教育学  教育学门类,包含教育学、3433623735心理学、体育学3个一级学科,17个二级学科,其中教育学10个、心理学3个、体育学4个。其中不考数学的专业有:教育学原理[040101]、课程与教学论[040102]、教育史[040103]、比较教育学[040104]、学前教育学[040105]、高等教育学[040106]、成人教育学[040107]、职业技术教育学[040108]、特殊教育学[040109]、教育技术学[040110]、基础心理学[040201]、发展与教育心理[040202]、应用心理学[040203]、体育人文社会学[040301]、运动人体科学[040302]、体育教育训练学[040303]、民族传统体育学[040304]  【4】文学  文学门类,包含4个一级学科,29个二级学科,其中中国语言文学8个、外国语言文学11个、新闻传播学2个、艺术学8个。其中不考数学的专业有: 文艺学[050101]、语言学及应用语[050102]、汉语言文字学[050103]、中国古典文献学[050104]、中国古代文学[050105]、中国现当代文学[050106]、中国少数民族语[050107]、比较文学与世界[050108]、英语语言文学[050201]、俄语语言文学[050202]、法语语言文学[050203]、德语语言文学[050204]、日语语言文学[050205]、印度语言文学[050206]、西班牙语语言文[050207]、阿拉伯语语言文[050208]、欧洲语言文学[050209]、亚非语言文学[050210]、外国语言学及应[050211]、新闻学[050301]、传播学[050302]、新闻传播学[050300]  【5】历史学  历史学学科门类包含历史学1个一级学科,8个二级学科。其中不考数学的专业有:史学理论及史学[060101]、考古学及博物馆[060102]、历史地理学[060103]、历史文献学[060104]、专门史[060105]、中国古代史[060106]、中国近现代史[060107]、世界史[060108]  【6】理学  理学学科门类,包含12个一级学科,50个二级学科。一般理学类对数学的要求较高,但也有以下专业例外:无机化学[070301]、分析化学[070302]、有机化学[070303]、物理化学[070304]、得分子化学与物[070305]、自然地理学[070501]、人文地理学[070502]、海洋化学[070702]、海洋生物学[070703]、植物学[071001]、动物学[071002]、生理学[0710030]、水生生物学[071004]、微生物学[071005]、神经生物学[071006]、遗传学[071007]、发育生物学[071008]细胞生物学[071009]、生物化学与分子生物学[071010]、生态学[071012]、科学技术史[071200]  【7】医学类专业  医学门类:包含8个一级学科、54个二级学科,其中基础医学7个、口腔医学2个、公共卫生与预防医学6个、临床医学18个、中医学13个、中西医结合2个、药学6个、中药学不设二级学科。医学类专业是否考数学要根据院校而定,有的学校要考,有的学校则要求考两门业务课。  【8】管理类专业  管理学学科门类,包含管理科学与工程、工商管理、农林经济管理、公共管理、图书馆、情报与档案管理5个一级学科,14个二级学科。管理学类不考数学的专业较少,目前仅有以下三个:行政管理[120401]、土地资源管理[120405]、社会保障[120404]  【9】艺术学  艺术学是从以往文学门类中划分出来的新增门类,美术、音乐等专业院校及一些综合类院校艺术类专业培养的艺术类专业人才。共设五个一级学科:艺术学理论、音乐与舞蹈学、戏剧与影视学、美术学和设计学,具体专业涉及绘画、雕塑、陶艺、设计、书法、篆刻、摄影、声乐、器乐、歌舞剧、舞蹈学、曲艺学等。其中不考数学的专业有:  艺术学理论[1301]、音乐与舞蹈学[1302]、戏剧与影视学[1303]、美术学[1304]、设计学[1305](可授艺术学、工学学位)

考研一般都考几门课 有什么条件

大宅男
见之
两门公共课:政治、英语一门基础课:数学或专业基础一门专业课(分为13大类):哲学、经济3365666262学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。考生学业水平必须符合下列条件之一:1.国家承认学历的应届本科毕业生(含普通高校、成人高校、普通高校举办的成人高等学历教育应届本科毕业生)及自学考试和网络教育届时可毕业本科生,录取当年9月1日前须取得国家承认的本科毕业证书)。2.具有国家承认的大学本科毕业学历的人员,要求报名时通过学信网学历检验,没通过的可向有关教育部门申请学历认证。3.获得国家承认的高职高专毕业学历后满2年(从毕业后到录取当年9月1日,下同)或2年以上,达到与大学本科毕业生同等学历,且符合招生单位根据本单位的培养目标对考生提出的具体业务要求的人员。4.国家承认学历的本科结业生,按本科毕业生同等学历身份报考。5.已获硕士、博士学位的人员。在校研究生报考须在报名前征得所在培养单位同意。扩展资料全国硕士研究生招生考试分初试和复试两个阶段进行。初试和复试都是硕士研究生招生考试的重要组成部分。初试由国家统一组织,复试由招生单位自行组织。初试方式分为全国统一考试、联合考试、单独考试以及推荐免试。全国统一考试的部分或全部考试科目由教育部考试中心负责统一命题,其他考试科目由招生单位自行命题。联合考试在特定学科(类别)、专业(领域)进行,部分或全部考试科目联合或统一命题。单独考试由具有单独考试资格的招生单位进行,考生须符合特定报名条件,所有考试科目由招生单位单独命题。推荐免试是指依据国家有关政策,对部分高等学校按规定推荐的本校优秀应届本科毕业生,及其他符合相关规定的考生,经确认其免初试资格,由招生单位直接进行复试考核的选拔方式。参考资料百度百科-考研

考研究生都需要考那些科目?

姑奶奶
服食
考研考试科目:思想政治理论、外语、数学(联考)、专业课。官方电话在线客服官方服务官方网站ACCACPA初级职称考研公务员