欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研究生什么专业不用考数学?

待之成体
杜十娘
1.这些专业不用考数学汉语言文学(文学语言学文字学)历史哲学新闻学传播学播音主持采访编辑(都属新闻专业)版管理类方面(企业管理金融管理工商管理要考数学;行政管理看情况而定)图书管理学劳动与社会保障旅游专业(大部分不用考看学校来定)工业设计服装设计装潢设计(看学校而定)园林设计(主要看农业学校而定)艺术类(声乐、美术、体育)医学类(看学校而定)心理学(由学校而定在应用心理学中需要考统计学)权社会学法律生物科学(由学校而定)英语(科技英语有的学校要考)看你学什么专业了

考研究生一定要考数学吗?

红财神
毒中毒
这些 基本不用来 考数学汉语言文学自(文学 语言学 文字学 ) 历史 哲学 新闻学 传播学 播音主持 采访编辑(都属新闻专业) 管理类方面(企业管理 金融管理 工商管理 要考数学;行政管理 看情况而定) 图书管理学 劳动与社会保障 旅游专业 (大部分不用考 看学校来定) 工业设计 服装设计 装潢设计(看学校而定) 园林设计(主要看农业学校而定) 艺术类(声乐、美术、体育) 医学类(看学校而定) 心理学(由学校而定 在应用心理学中 需要考统计学) 社会学 法律 生物科学(由学校而定) 英语(科技英语有的学校要考)很多不需要的

考数学研究生都考些什么?

始时所是
王未之见
我本科就是计算机的,12年考研考的大连理工的数学专业。数学专业不考数学一二三,咱回们考数学答专业课:数学分析,高等代数。数学分析内容和高数差不多,只是更专业,更有深度和难度;高等代数内容和线性代数差不多,当然更难。数学专业考研专业课各学校独立命题,但都是考数分高代这两门课且都以证明题为主,难度肯定是有的,,但是绝不会超出本科学习的内容。我给你一份北大的数学分析考研试题及解答,你参考参考吧谢谢!那复试考什么呢?这个因学校而定,复试步骤是:报到,体检,专业课笔试,英语口试,思想道德测试,综合面试。笔试的专业课每个学校是不同的,我们大连理工《是实变函数》《泛函分析》《近世代数》《概率统计》四科。北大是常微、实变、复变、抽代、泛函、拓扑、微分几何。综合面试老师也会提问专业问题,这个就没范围了,想问什么就问什么,考验你的应变能力

考研需要考数学吗

恐龙王
攻击者
汉语言文学3431363062(文学语言学文字学 )考研不考数学。汉语言文学考研的专业研究方向有:汉语语法史、词汇学(含训诂学)、文字学。考试科目:① 101思想政治理论② 201英语一 或202俄语 或203日语 或240法语 或241德语③ 635语言学理论④ 840汉语基础(含古代汉语、现代汉语)复试笔试科目:汉语言文字学基础同等学力加试科目:①写作②文学基础(含古、今、中、外)扩展资料:考研不需要考数学的专业1、汉语言文学(文学语言学文字学 )2、历史3、哲学4、新闻学5、传播学6、播音主持7、采访编辑8、管理类方面(企业管理 金融管理 工商管理要考数学;行政管理看情况而定)9、图书管理学10、劳动与社会保障11、工业设计12、服装设计13、装潢设计(看学校而定)14、园林设计(主要看农业学校而定)15、艺术类(声乐、美术、体育)16、医学类(看学校而定)17、心理学(由学校而定 在应用心理学中 需要考统计学)18、社会学19、法律20、生物科学(由学校而定)21、英语(科技英语有的学校要考)22、民族学23、宗教学24、公共管理25、政治26、地质参考资料:百度百科-汉语言文学参考资料:文法学院-考研不考数学的专业一览

任何研究生考试都必须考数学或学数学吗

陆贾
二柄
不是啊法律心理学3231613334医学还有很多都不考数学数学(一)适用的招生专业为: (1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。 (2)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。 数学(二)适用的招生专业为: 工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。 数学(一)、数学(二)可以任选其一的招生专业为: 工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中所有的二级学科、专业。 数学(三)适用的招生专业为: (1)经济门类的应用经济学一级学科中的二级学科、专业:统计学、数量经济学。 (2)管理学门类的工商管理一级学科中的二级学科、专业:企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理。 数学(三)、数学(四)可以任选其一的招生专业为: (1)经济学门类的理论经济学一级学科中所有的二级学科、专业。 (2)经济学门类的应用经济学一级学科中的二级学科、专业:国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、国际贸易学、劳动经济学、国防经济。 (3)管理学门类的工商管理一级学科中的二级学科、专业:会计学、旅游管理。 (4)管理学门类的农林经济管理一级学科中所有的二级学科、专业。

研究生考试哪些专业不用考数学?

冲气
格斗手
会计学专业、636f707962616964757a686964616f31333431353339工商管理专业、公共管理专业、旅游管理专业、工程管理专业等。1、会计学专业会计学专业属工商管理学科,是一个应用性较强的专业。该专业设有企业会计、国际会计、注册会计师等三个专业方向。专业以企业会计为主,兼顾计算机与财务管理。在教学方法上强调理论与实践相结合的教学模式,提倡启发式与案例教学,多方位培养学生处理会计业务与管理财务的操作能力和创新能力。开设院校:浙江财经大学、浙江工商大学、杭州电子科技大学、宁波大学、浙江理工大学等。2、工商管理专业工商管理专业是研究工商企业经济管理基本理论和一般方法的学科,主要包括企业的经营战略制定和内部行为管理两个方面。工商管理专业的应用性很强,它的目标是依据管理学、经济学的基本理论,通过运用现代管理的方法和手段来进行有效的企业管理和经营决策,保证企业的生存和发展。开设院校:浙江大学、浙江工商大学、浙江工业大学、浙江理工大学、宁波大学等。3、公共管理专业公共管理专业旨在为政府部门和非政府机构以及企事业单位的人事和行政机构培养宽口径、复合型、应用型的公共管理高层次专门人才。公共管理专业旨在通过综合运用经济学、政治学、社会学等学科的知识培养学生对当前政府事务的综合分析能力。开设院校:浙江中医药大学、浙江大学、浙江师范大学、浙江工业大学、浙江工商大学、浙江财经大学等。4、旅游管理专业旅游管理专业是随着我国旅游经济的发展、旅游产业的发育而建立的一个新型学科。在中国,这门学科的产生只有二十多年的时间,但已成为管理学科体系中的一个重要的学科部门。该专业培养适应新形势旅游企事业单位需要的一线服务与管理类专门人才。开设院校:浙江大学、浙江工业大学、浙江师范大学、宁波大学、浙江工商大学、浙江海洋学院、浙江农林大学、杭州师范大学等。5、工程管理专业工程管理专业是新兴的工程技术与管理交叉复合性学科。该专业培养具备管理学、经济学、信息工程、土木工程等技术的基本知识,掌握现代管理科学的理论、方法和手段的复合型高级管理人才。开设院校:浙江工业大学、绍兴文理学院、浙江理工大学、浙江工商大学、浙江财经大学等。参考资料来源:百度百科-会计学专业参考资料来源:百度百科-工商管理参考资料来源:百度百科-公共管理专业参考资料来源:百度百科-旅游管理专业参考资料来源:百度百科-工程管理专业

考研数学四是什么级别啊要考些什么

慈母曲
德则不冒
2006年数学四考研大纲希望对考数学四的人有点用2006年全国硕士研究生入学考试 数学四考试大纲 数学四考试科目微积分、线性代数、概率论微 积 分一、 函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、隐函数 分段函数 基本初等函数的性质及其图形初等函数 简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1、 理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。2、 了解函数的有界性、单调性、周期性和奇偶性。3、 理解复合函数及分段函数的概念,了解隐函数及反函数的概念。4、 掌握基本初等函数的性质及其图形,理解初等函数的概念5、 了解数列极限和函数极限(包括坐极限和右极限)的概念。6、 理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其无穷小的关系。7、 了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,会应用两个重要极限。8、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、 一元函数微分学考试内容导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式的不变性罗尔定理和拉格郎日中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值考试要求1、 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数3、 了解高阶导数的概念,会求简单函数的高阶导数4、 了解微分的概念,导数与微分之间的关系,以及一阶微分的形式的不变性,会求函数的微分。5、 理解罗尔(Rolle)定理和拉格郎日中值定理、掌握这两个定理的简单应用。6、 会用洛必达法则求极限。7、 掌握函数单调性的判别方法及其应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题。8、 会用导数判断函数图形的凹凸性,会求函数图形的拐点和斜渐近线。9、 会作简单函数的图形。三、 一元函数的积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 广义积分 定积分的应用。考试要求1、 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。2、 了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式,以及定积分的换元积分法和分部积分法。3、 会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题。4、 了解广义积分的概念,会计算广义积分四、 多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算。考试要求1、 了解多元函数的概念,了解二元函数的几何意义。2、 了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质。 3、 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数 会求全微分,会用隐函数的求导法则。4、 了解多元函数的极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。5、 了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法,了解无界区域上的较简单的广义二重积分并会计算 五、 常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程一阶线性微分方程考试要求1、 了解微分方程及其解、阶、通解、初始条件和特解等概念。2、 掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。线 性 代 数一、 行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1、 了解行列式的概念,掌握行列式的性质。 2、 会应用行列式的性质和行列式按行(列)展开定理计算行列式。二、 矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1、 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵,反对称矩阵及正交矩阵等的定义和性质。 2、 掌握矩阵的线性运算、乘法、以及它们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质。 3、 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。4、 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。5、 了解分块矩阵的概念,掌握分块矩阵的运算法则。三、 向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法。考试要求1、 了解向量的概念,掌握向量的加法和数乘运算法则。2、 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。3、 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。4、 了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。5、 了解内积的概念、掌握线性无关向量组正交规范化的施密特(Schmidt)方法。四、 线性方程组考试内容线性方程组的克莱母(又译:克拉默)(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解。考试要求1、 会用克莱母法则解线性方程组。2、 掌握非齐次线性方程组有解和无解的判定方法。3、 理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的方法。 4、理解非齐次线性方程组的结构及通解的概念。 5、掌握初等行变换求解线性方程组的方法。五、 矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵。考试要求1、 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。2、 理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。3、 掌握实对称矩阵的特征值和特征向量的性质.概 率 论一、 随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算。2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握计算概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式等。 3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。二、 随机变量及其概率分布考试内容随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布考试要求1. 理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x} (-∞<x<+∞)的概念及性质;会计算与随机变量相联系的事件的概率。2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2) 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为5.会求随机变量函数的分布。三、 随机变量的联合概率分布考试内容随机变量的联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布。考试要求1、 理解随机变量的联合分布函数的概念和基本性质。2、 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握两个随机变量的边缘分布和条件分布。3、 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。4、 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。5、 会根据两个随机变量的联合概率分布求其函数的分布;会根据多个独立随机变量的概率分布求其函数的分布。四、 随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫不等式 矩、协方差 相关系数及其性质。考试要求 1、 理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数学特征的基本性质,并掌握常用分布的数字特征。 2、 会求随机变量函数的数学期望。3、了解切比雪夫不等式。五、 中心极限定理考试内容隶莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理。考试要求1、 了解隶莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。试 卷 结 构(一) 题分及考试时间试卷满分为150分,考试时间为180分钟。(二) 内容比例高等数学 约50%线性代数 约25%概率论 约25%(三) 题型比例填空题与选择题 约40%解答题(包括证明)约60%参考资料:http://bbs.kaoyan.com/viewthread.php?tid=1165052数学四要考:copy 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程);2、线性代数;3、概率论。 其他的:数学一: 1、高等数学(函数、极限、连续、一元函数的微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);2、线性代数;3、概率论与数理统计。 数学二: 1、高等数学(函数、极限、连续、一元函数微积分学、微分方程);2、线性代数。 数学三: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);2、线性代数;3、概率论与数理统计。

考研一定都得考数学和英语吗?

桔梗花
固不待物
英语是一定要考的如果你跨专业考文科专业可以不用考数学如果你还考本专业那数学也是一定要考的

行政管理考研考数学吗?

刚柔
桃源镇
怀俄明位于中西部山区,那里土地贫瘠,