欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研时说的“数三”是什么意思啊?

同心同德
白河船
考研时说的“数三”是考研数学三,包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。考研数学三试卷内容结构为微积分占56%,线性代数占22%,概率论与数理统计占22%。题型为单项选择题选题8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分。扩展资料1、考研数学命题原则科学性与公平性原则:作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。覆盖全面的原则:考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。控制难易度的原则:考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。2、考研数学复习技巧数学复习的第一步就是读教材,教材是基础,是数学复习中必须重视的知识,所以一定要把握,并好好利用。当通过教材掌握了基础的定理、原理、公式,接下来就要认真做教材后面的题目,这是检验对基础掌握的情况,如果遇到不会的题目或做错的题一定要真正分析、总结。最好准备一个错题本,它在后期复习中起的作用远远超过我的想象。参考资料来源:百度百科-考研数学

考研数学一和数学三有什么区别吗?

黄衣爱
忠烈图
考研数学 数学一 考试科目 微积分、线性代数、概率论与数理统计初步 数学二 考试科目 微积分、线性代数初步 数学三 考试科目 微积分、线性代数、概率论与数理统计 数学四 考试科目 微积分、线性代数、概率论 报考理工类(非数学)专业考数学一或二,报考经济管理类专业考数学三或四。 数学一对微积分要求较高,数学三对概率统计要求较高。总体来说数一要比数三难很多

考研数学之数一、数二、数三的区别有哪些?

大知闲闲
渭阳
以下是小编准备的“2018考研数学之数一、数二、数三的区别”的相关内容,一起看看吧。相信目前同学们都知道的一个事实是,在数一中,高等数学、线性代数、概率与数理统计的比例为56%、22%、22%;数二不考概率与数理统计,高等数学和线性代数的比例是78%、22%;数三中三者的比例和数一的相同,也是56%、22%、22%。其实,对于数一、数二、数三而言,每一门学科的侧重点也是不同的。下面,具体为大家分析一下。我们先来看一下高等数学。高等数学可以说在数一、数二、数三三门考试中,区别是最大的,而这一种区别也只是表现在考试范围上的要求,而在考试能力上的要求是几乎没有变化的。比如说极限,对于数一、数二、数三而言,都要考察,在考试的要求上几乎是完全一样的。对于数一的考生而言,我们复习的重点是下册,也就是说考试的重点是多元函数微分学,多元函数积分学,级数,并且多元函数微分学,多元函数积分学几乎每年都会各出一道大题。很多考生觉得是下册难,事实上,这一点大家是完全错误的想法,上册是比较难的。下册的知识点往往都是起点高,落点低。虽然说,每一道题目考查的都比较复杂,但是解题的方法和思路都是承接我们上册的思路和方法,而且也是比较好掌握的。只要我们掌握了其中的思想,要想拿到这部分的分数还是没有什么压力的。数二恰恰与数一相反的,数二同学的考试重点是上册,换句说话,对于数二的同学而言,考试的重点是极限、一元函数微分学、一元函数积分学。并且,数二的题目往往具有很高的灵活性,考察的也比较细致。这是因为,数二在高等数学方面的比例达到78%,也就是117分,然而数二考察的范围比较窄,所以这就注定了数二的题目具有很高的灵活性,也往往考察的比较细致。另一方面,高等数学的上册综合性还要高于下册。数三和数一的区别并不是很大。但是,数三的题目更加注重应用。这是因为,数三的考生大都是经济类和管理类的考生。所以说,数三比较注重应用,这一点需要引起数三同学的重视。其次,我们来看一下线性代数。数一、数二、数三在线性代数上的差别并不是很大,所以在这里我主要给大家说一下线性代数的重点在于什么。线性方程组和矩阵的相似对角化是考察的重点,并且大家还要注意线性方程组和向量之间的相结合,矩阵的相似对角化和二次型的相结合。每年线性代数要考察两道大题,而往往这两道大题都是这两个知识点各考察一道。最后,我们来看一下概率与数理统计。对于概率和数理统计而言,数一、数二、数三之间的区别也是几乎没有。同样,我也给大家点出,考试的重难点,希望可以帮助大家。多维随机变量的边缘分布和条件分布、随机变量函数、数字特征、参数估计这些都是考试的重点,其中的重点优先级单调递减。尤其是多维随机变量的边缘分布和条件分布、随机变量函数是非常重要的。对于数字特征,单独出大题的可能性比较低,但是往往会和其他的知识点结合在一起作为一道大题的第一问。最后我们来看一下参数估计,这个知识点,我希望数一的同学多注意一下,数一在这一板块考察大题的可能性还是比较高的。以上就是数一、数二、数三在考研数学中的区别,希望可以帮到大家。最后,预祝大家考研金榜题名!

关于考研,数一、数二、数三的区别有哪些?

不贱佞谄
花枝俏
考研数学从卷种上来看分为数学一、数学二、数学三;从考试内容上来看,涵盖了高等数学、线性代数、概率论与数理统计;试卷结构上来看,设有三种题型:选择题(8道共32分)、填空题(6道共24分)、解答题(9道共94分),其中数一与数三在题目类型的分布上是一致的,1-4、9-12、15-19属于高等数学的题目,5-6、13、20-21属于线性代数的题目,7-8、14、22-23属于概率论与数理统计的题目;而数学二不同,1-6、9-13、15-21均是高等数学的题目,7-8、14、22-23为线性代数的题目。一、科目考试区别:1.线性代数:数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,不同的是数一的大纲中多了向量空间部分的知识。2.概率论与数理统计:数学二不考察,数学一与数学三均占22%,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件3.高等数学:数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。二、试卷考试内容区别:1.数学一:高等数学:同济六版高等数学中除了第七章微分方程考带*号的欧拉方程,伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;第九章第五节不考方程组的情形;第十二章第五节不考欧拉公式。线性代数:数学一用的教材是同济五版线性代数1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。其中向量组的线性相关性中数一考向量空间,线性方程组跟空间解析几何结合数一也要考。概率与数理统计:1、概率论的基本概念。2、随机变量及其分布。3、多维随机变量及其分布。4、随机变量的数字特征。5、大数定律及中心极限定理。6、样本及抽样分布。7、参数估计。8、假设检验。2.数学二高等数学:同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。3.数学三高等数学:同济六版高等数学中所有带*号的都不考;所有“近似”的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。不考第八章空间解析几何与向量代数。第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数。线性代数:数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题。概率与数理统计的内容包括:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计,其中数三的同学不考参数估计中的区间估计。三、对应考试的专业不同。数学一是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。数学二是报考农学的学生考,考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的数学三是报考经济学的学生考,考试内容是高等数学,线性代数和概率统计。高数部分中,主要重视微积分的考察,概率统计中没有假设检验和置信区间。四、适用的学科不同:数学一适用的学科为:1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业。3.管理学门类中的管理科学与工程一级学科数学二适用的学科为:1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业。数学三:适用学科为:1.经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业。2.管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业。3.管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业。五、难度上的区别:数学一最大,数学三最小,数学二由于内容较少,试题的灵活性也相对较大。

考研数学三考什么??

爱阡陌
涕泣沾襟
考研数学三考什么?考研数学三考什么内容?数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。考试内容:一、微积分函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数.当 时, 的图形是凹的当 时, 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.

考研数学一和数学三什么区别?

美味男
华尔街
huangcizheng[圣人] 考研数学数学一考试科目微积分、线性代数、概率论与数理统计初步数学二考试科目微积分、线性代数初步数学三考试科目微积分、线性代数、概率论与数理统计数学四考试科目微积分、线性代数、概率论报考理工类(非数学)专业考数学一或二,报考经济管理类专业考数学三或四。数学一对微积分要求较高,数学三对概率统计要求较高。

考研数学三都考什么?

钱穆
若是若非
考研数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。考试内容:一、微积分函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.七、线性代数行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.八、矩阵考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.九、向量考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.十、线性方程组考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.十一、矩阵的特征值和特征向量考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.十二、二次型考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.十三、概率统计随机事件和概率考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.十四、随机变量及其分布考试要求.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为5.会求随机变量函数的分布.十五、多维随机变量及其分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.十六、随机变量的数字特征考试要求理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.十七、大数定律和中心极限定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.十八、数理统计的基本概念考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、分布和分布得上侧 分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.十九、参数估计考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

考研 数学一比数学三到底难多少啊??

夏丽
候车厅
数一的童鞋可以很明确的告诉你,数二只是比数一少了一门课,某种程度上讲比数三好考,题目难度,数一到三都差不多,终有一天数一二三都合并了(三四已经合并为三了),所以别因为这一点差别去改变你方向。

考研数学一和二及三的区别

恶可而言
研究生入学考试中,数学是比较特殊的一门,它兼具专业课和公共课的双重性质,是工学、经济学、管理学等学科专业硕士研究生入学考试的必考科目,考查内容涉及高级数学、概率统计以及线性代数三个部分,分为四个类型,即数学一、数学二、数学三以及数学四(数三数四在09年合并),分辨对应对数学要求不同的专业。不同类型的考试范畴、难度和侧重点不同。数学一包含:高数,线性代数,概率论与数理统计,考察内容十分的广泛,学生较为容易遗忘,需要不断的复习巩固。属于理工类的。数学二包含:高数和线性代数,不考概率与数理统计,对于高数的部分内容如不定积分要求较高。属于理工类的。数学三包含:微积分,线性代数,概率论与数理统计,数三是经济类的,所以对于概率与数理统计的要求较高。属于经济类的,高等数学中的曲线积分,曲面积分在数学三中不作要求