任德
数三和数一的考试科目一样都是《高等数学》、《线性代数》、《概率论与数理统计》这三门,但考试内容有所调整。这个数三的大纲可以参考一下:第一章:函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则(单调有界准则和夹逼准则) 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。 2、了解函数的有界性、单调性、周期性和奇偶性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形,了解初等函数的概念。 5、了解数列极限和函数极限(包括左极限与右极限)的概念。 6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。 7、理解无穷小的概念和基本性质。掌握无穷小的比较方法。了解无穷大量的概念及其与无穷小量的关系。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 第二章:一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(l'hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。 2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数。 3、了解高阶导数的概念,会求简单函数的高阶导数。 4、了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。 5、理解罗尔(rolle)定理、拉格朗日( lagrange)中值定理、了解泰勒(taylor)定理、柯西(cauchy)中值定理,掌握这四个定理的简单应?谩? 6、会用洛必达法则求极限。 7、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。 8、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当时,f(x)的图形是凹的;当时,f(x)的图形是凸的),会求函数图形的拐点和渐近线。 9、会描述简单函数的图形。 对比:在考试要求第5条中增加了“了解泰勒(taylor)定理”在考试要求第8条中增加了“(注:在区间(a,b)内,设函数f(x)具有二阶导数。当时,f(x)的图形是凹的;当时,f(x)的图形是凸的)” 分析:1、往年泰勒(taylor)定理对于考数三的同学是不做要求的,但是鉴于泰勒公式在一些较复杂函数近似表达中的重要性和简便性,所以考生还是有必要了解的;二是虽然往年对于泰勒(taylor)定理不做要求,但是在考试中往往有些学生在解题过程中用到泰勒定理,那么到底算不算超纲解法一直有争议,所以还是有必要明确一下。 2、对于第8条的注释,由于教材版本较多,所以判定性质不一样,为了统一所以大纲中特意注明。 建议:1、既然是新增内容,考生一定要在复习过程中加强这一方面的练习 ,掌握其基本的出题思路和基本解法,弄清楚概念、公式。但是一定不要有什么心理负担,认为新增的内容可能考的比较难,其实大家看考纲的要求就知道,对这个知识点的要求是比较低的,属于了解内容。所以只要踏实复习,掌握基本内容,基本题型和解法就可以了。 2、大家在复习过程中尽量使用与大纲一致的一些符号和定义。 第三章:一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(newton- leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用 考试要求 1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法。 2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。 3、会利用定积分计算平面图形的面积、旋转体的体积及函数的平均值,会利用定积分求解简单的经济应用问题。 4、了解反常积分的概念,会计算反常积分。 第四章:多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分 考试要求 1、了解多元函数的概念,了解二元函数的几何意义。 2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。 3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。 4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用题。 5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标)。了解无界区域上较简单的反常二重积分并会计算。 第五章:无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1、了解级数的收敛与发散、收敛级数的和的概念。 2、掌握级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 3、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法。 4、会求幂级数的收敛半径、收敛区间及收敛域。 5、了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和。 6、掌握与的麦克劳林(maclaurin)展开式,会用它们将简单函数间接展成幂级数。 第六章:常微分方程与差分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线?晕⒎址匠碳凹虻サ姆瞧氪蜗咝晕⒎址匠獭〔罘钟氩罘址匠痰母拍睢〔罘址匠痰耐ń庥胩亟狻∫唤壮O凳 咝圆罘址匠獭‖⒎址匠逃氩罘址匠痰募虻ビτ? 考试要求 1、了解微分方程及其阶、解、通解、初始条件和特解等概念。 2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。 3、会解二阶常系数齐次线性微分方程。 4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程。 5、了解差分与差分方程及其通解与特解等概念。 6、掌握一阶常系数线性差分方程的求解方法。 7、会应用微分方程和差分方程求解简单的经济应用问题。 线性代数 第一章:行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质。 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。 第二章:矩阵 考试要求 1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质。 2、掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。 5.了解分块矩阵的概念,掌握分块矩阵的运算法则。 第三章:向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线形无关向量组的正交规范化方法。 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则。 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念。掌握向量组线性相关、线性无关的有关性质及判别法。 3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。 5.了解内积的概念、掌握线性无关向量组正交规范化的施密特(schmidt)方法。 第四章:线性方程组 考试内容 线性方程组的克莱姆(cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1. 会用克莱姆法则解线性方程组。 2. 掌握非齐次线性方程组有解和无解的判定方法。 3. 理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 4. 理解非齐次线性方程组解的结构及通解的概念。 5. 掌握用初等行变换求解线性方程组的方法。 第五章:矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件?跋嗨贫越蔷卣蟆∈刀猿凭卣蟮奶卣髦岛吞卣飨蛄考跋嗨贫越蔷卣蟆? 考试要求 1. 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。 2. 理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。 3. 掌握实对称矩阵的特征值和特征向量的性质。 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1. 了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念。 2. 了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。 3. 理解正定二次型、正定矩阵的概念,并掌握其判别法。 第一章:随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(bayes)公式等。 3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 第二章:随机变量及其分布 考试内容 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1、理解随机变量的概念,理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。 2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布()、几何分布、超几何分布、泊松(poisson)分布及其应用。 3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。 4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为。 5、会求随机变量函数的分布。 对比:新大纲给出了分布的标准字母表示,可能意味着考生应该记忆并掌握这种标准的写法。 第三章:多维随机变量的分布 考试内容 多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布 考试要求 1、理解多维随机变量的分布函数的概念和基本性质。 2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度。掌握两维随机变量的边缘分布和条件分布。 3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。 4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。 5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。