欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一用什么参考书啊?

笑八仙
穷通
1、《高等数学》,同济大学出版社,第七版;2、《线性代数》,同济大学出版社,第七版;3、《概率论与数理统计》浙江大学出版社,第四版;4、历年真题:《数学历年真题解析》、《数学基础过关660题》、《全真模拟经典400题》等。扩展资料数学复习的第一步就是读教材,复习过程中,也看到有的同学一上来就是辅导书,但坚持了一个多月,他们不得不再次回到教材上,这样不仅浪费了时间,而且也容易让自己变得浮躁。教材是基础,是数学复习中必须重视的知识,所以一定要把握,并好好利用。通过教材掌握了基础的定理、原理、公式后,接下来就要认真做教材后面的题目,这是检验你对基础掌握的情况,如果遇到不会的题目或做错的题一定要真正分析、总结。最好准备一个错题本,它在后期复习中起的作用远远超过我的想象。参考资料:百度百科——考研数学

考研高数用哪个版本好一点?

红灯梦
君无形倨
考研高数版本:同济大学编著的高等教育出版社的《高等数学》4、5、6版都可以,同济版的《线性代数》,浙江大学盛骤编著高等教育出版社的《概率论与数理统计》。考研规划:一、时间安排:冲刺=12月前(真题模拟)+12月进行考前巩固(一)、12月前做真题——30年考研数学真题反复做,2010年之前的按科目来做,不会的题标记,以便下次再做。2011年之后的(含2011年),按套卷来做。做真题的过程中,遇到不会的概念定义,要及时回归课本,去看课本的基本定义概念,这个过程特别重要。就像练武,回归课本,弄懂概念,就是打通任督二脉,万变不离其中,概念懂了,什么题都难不倒。1、真题和模拟题该如何取舍真题是最经典的,如果复习时间紧迫,那就放弃模拟,就做真题。模拟题是辅助,选择好的模拟题,不好的有错题,会误导,这样的模拟题不如不做,学有余力的同学,真题做好的基础上,做4套左右模拟题就足够了。2、回归课本12月份之前,遇到不会的,不理解的定义定理,一定要回归课本;考研数学重基础轻技巧,因此,做题的时候,尽量选择用基础定义来做,一道题会一种方法即可,切忌一题多做,这个阶段,时间太紧,没有足够的时间一题多做。(二)、12月份后进入12月——距离考试还有20多天。这段时间,每天上午的时间必须拿来做数学套题。8:30开始,11:30结束,跟着考试时间的节奏来,练自己的做题速度和题感。这个阶段的套题,可以是真题,可以是模拟题,但模拟题还是要选择质量好的。而且模拟题的分数不作为参考分数,模拟题大多水平不如真题,对完答案,考多考少,都淡定,真题和模拟题完全不一样。最后20天,还有个重要的环节,继续回归课本,高数里边的,一些低频易考知识点,就是这个阶段冲击,曲率、方向导数、差分方程,这些都是记公式就能那分的题,一定要再考前记一记,喝前摇一摇。二、说说真正上战场的战术在冲刺阶段就把状态调成跟考研当天一样,上午数学,培养自己上午做数学的感觉。数学考试计算量大,所以有部分同学,做完就没时间检查了,不要惊慌,数学检查和其他科目不一样,还是要算的,还是需要时间,3个小时,23道题,最后留给我们的检查时间很少,所以不能检查的也不要气馁。特别说一下做题顺序,试卷拿到手之后,按照顺序做题,先选择再填空,最后大题,但是遇到不会做的,考虑了一会,没有思路的,果断下一个题,等所有题都做完了,回头再来做这种题。这个时候,有做其他题的经验,说不定就会做了。还有就是计算过程,答题纸没那么大,一般是需要写在草稿纸上算的,草稿纸是考场上发的,不够用的,早点跟监考老师举手要。根据地区不同,有的地区老师可能就不给你了,所以鉴于这个原因,建议大家多打几张准考证,用来算题。最后,数学这门学科,有意思的地方在于,当你认为自己死去活来的时候,坚持下去,你就上了一层楼。好好对数学,最后数学也会好好对你,150分的满分,这些就是你提分的关键。

请问,考研所用的高等数学一,是哪几本书,谢谢大家

昌寓骖乘
焦竑
数学一用的书是微积分1,2。线性代数,概率论这几本书,且在这几本书中,大多数的内容数学一都要考。工科专业一般都考数学一,数学一最难。你说的经管类大多数考的是数学三,数学三也是这几本书,只是内容相比于数学一会少一点。你要具体的根据你报考的学校和专业查看对应的考试科目才行。您所说的微积分,线性代数都是哪个学校出版的,谢谢

考研高等数学选什么参考书好?

莫大于海
此处三焉
陈文灯指南 好 基础期别看 中后期看 有帮住

考研数学应该用什么参考书

解心释神
后人类
A.基础阶段:2019年6月底前各科目课本 +《张宇带你学高等数学·同济七版(上册)》《张宇带你学高等数学·同济七版(下册)》《张宇带你学线性代数·同济六版》《张宇带你学概率论与数理统计·浙大四版》另:《张宇考研数学题源探析经典1000题》A组、(附加)“36讲”简单题及例题做完B.强化阶段:2019年7月-8月底“36讲”+《张宇考研数学题源探析经典1000题》B组“36讲”包含:《2020考研张宇高等数学18讲》《2020考研张宇线性代数9讲》《2020考研张宇概率论与数理统计9讲》提分阶段:2019年9月-10月底《2020张宇考研数学真题大全解》+《张宇考研数学题源探析经典1000题》C组+《张宇考研数学闭关修炼180题》考前阶段:2019年11月-12月中下旬《2020张宇考研数学命题人终极预测8套卷》+《2020张宇考研数学最后4套卷》

考研高等数学乙用什么参考书好

刺秦王
拉雷手
数学除国家卷外还有四种试卷:高等数学甲、高等数学乙、高等数学A、高等数学B;其中高数甲与高数A难度相当,高数乙与高数B难度相当,高数甲(A)难度远高于高数乙(B);高数甲、乙是中科院命题,高数A、B是中科大命题。就中科大命题的高数B来说,难度低于数二,因此高等数学(乙)要比数二简单一点。没有对应的参考书,你可以按照市面上的数二的资料复习。到后期,在网上找找真题做做。

301数学一跟601这些有什么区别?我考研的课程是数学301,内容是哪些方面,参考书目有哪些、?

彼知颦美
魔术师
考研的统考数学共有四种,即301数学一,302数学二,303数学三,304数学四。四种数学的考试范围及适用专业不同。601数学指的是考研自主招生题目。301数学一考试科目:高等数学、线性代数、概率论与数理统计301数学参考书目:高数教材:《高等数学》——同济版,高等教育出版社出版;线代教材:《线性代数》——同济版,高等教育出版社;概率教材:《概率论与数理统计》——浙江大学盛骤版,高等教育出版社;高等数学:函数、极限、连续考试要求:1.理解函数的概念2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求:1.理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试要求:1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.向量代数和空间解析几何考试要求:1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数微分学考试要求:1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题.多元函数积分学考试要求:1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).无穷级数考试要求:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.常微分方程考试要求:1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.3.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.4.了解分块矩阵及其运算.向量考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求:1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件解空间 非齐次线性方程组的通解考试要求:l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率统计随机事件和概率考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典概率 几何概率 条件概率概率的基本公式 事件的独立性 独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念2.掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念随机变量及其分布考试内容量 :随机变量 随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求:1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.3.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为4.会求随机变量函数的分布.多维随机变量及其分布考试内容:多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求:1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.随机变量的数字特征考试内容:随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求:1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.大数定律和中心极限定理考试内容:切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求:1.了解切比雪夫不等式.2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).数理统计的基本概念考试内容:总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求:1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.参数估计考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求;1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.假设检验考试内容:显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求:1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。2.掌握单个及两个正态总体的均值和方差的假设检验。扩展资料:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2.授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1.经济学门类的各一级学科。2.管理学门类中的工商管理、农林经济管理一级学科。3.授管理学学位的管理科学与工程一级学科。参考链接:百度百科:考研数学

请问,考研所用的高等数学一,是哪几本书,谢谢大家

明何由出
惠子吊之
数学一用的书是微积分1,2。线性代数,概率论这几本书,且在这几本书中,大多数的内容数学一都要考。工科专业一般都考数学一,数学一最难。你说的经管类大多数考的是数学三,数学三也是这几本书,只是内容相比于数学一会少一点。你要具体的根据你报考的学校和专业查看对应的考试科目才行。

考研高等数学B的参考书需要什么

小故
僧诠
应是该校自命题,请咨询该校研招办。一般工科本科高数(例如同济版)、工科工程数学概率论与数理统计 就行了。高数B不属于统考考研数学范畴,部分科研院所,如中科院,会考这些。数学专业有时也会考这些。因为不是大多数人考研考查的内容,故相关资料会少一些。但是高数B所包含的主要知识点和考研里面的高等数学都是一样的,可以参照复习。