欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

全国考研都统一考哪些题目?

适百里者
莫迪斯
1、全国硕士研究生统一考试统考科目主要为政治、数学和英语。2、考研时,由教育部统一命题的科目包括: 101-思想政治理论、199-管理类联考综合能力、201-英语一、202-俄语、203-日语、204-英语二、301-数学一、302-数学二、 303-数学三、306-西医综合、307-中医综合、311-教育学专业基础综合、312-心理学专业基础综合、313-历史学基础;314-数学 (农)、315-化学(农)、397-法硕联考专业基础(法学)、398-法硕联考专业基础(非法学)、408-计算机学科专业基础综合、414-植物生 理学与生物化学、415-动物生理学与生物化学、497-法硕联考综合(法学)、498-法硕联考综合(非法学)。

考研都考什么?

汤武之室
非所言也
考研科目共四门:两门公共课、一门基础课(数学或专业基础)、一门专业课。两门公共课:政治、英语。一门基础课:数学或专业基础。一门专业课(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。其中:法硕、西医综合、教育学、历史学、心理学、计算机、农学等属统考专业课;其他非统考专业课都是各高校自主命题。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(加入全国统考的学校全国统一命题)。扩展资料考研英语分为考研英语一和考研英语二。考研数学分为考研数学一、考研数学二、考研数学三。其中工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程。以及控制科学与工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业须使用数学一。

考研都考那些科目?

萧何
三咲
考研科目共四门:两门公共课、一门基础课(数学或专业基础)、一门专业课。两门公共课:政治、英语。一门基础课:数学或专业基础。一门专业课(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。其中:法硕、西医综合、教育学、历史学、心理学、计算机、农学等属统考专业课;其他非统考专业课都是各高校自主命题。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(加入全国统考的学校全国统一命题)。扩展资料考研英语分为考研英语一和考研英语二。考研数学分为考研数学一、考研数学二、考研数学三。其中工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程。以及控制科学与工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业须使用数学一。

考研都考什么内容

汤将伐桀
非洲人
准备参加研究生考试的同学需要准备哪些考试科目?考研初试复试都考什么?

考研都考哪些科目

父亲节
比于大泽
准备参加研究生考试的同学需要准备哪些考试科目?考研初试复试都考什么?

考研都考什么科目

博约
吴虞
准备参加研究生考试的同学需要准备哪些考试科目?考研初试复试都考什么?

考研报考金融专业都考什么科目呢?

好儿子
画戏人
政治、英语二、数三、专业课

考研数一是不是还要考线数 概论 还有什么方面的内容要考

冯志远
夺命号
百分之百考。我先给你复制个2007年考试大纲,再给你复制个08对07年大纲的修订。数学一考试大纲数学一考试科目: 高等数学、线性代数、概率论与数理统计试卷结构(一)题分及考试时间试卷满分为150分,考试时间为180分钟。(二)内容比例高等教学 约60%线性代数 约20%概率论与数理统计20%(三)题型比例填空题与选择题 约40%解答题(包括证明题) 约60%高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数函数关系的建立. --------(调整知识点:将"简单应用问题函数关系的建立"调整为"函数关系的建立")----数列极限与函数极限的定义及其性质函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限 :函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容。导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数----(调整知识点:将"基本初等函数的导数 导数和微分的四则运算"调整为"导数和 微分的四则运算基本初等函数的导数")------ 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分曲率的概念 曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的n阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数---(考试要求中将2005年的"4.会求分段函数的一阶、二阶导数"以及"5.会求隐函数和由参数方程所确定的函数以及反函数的导数"调整并合并为"4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数"。)----5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法. ----(将原来的第9条提前至第6条,足见"洛必达法则求未定式极限"的重要性。)-----7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 ----(新增知识点:增加了"用定积分表达和计算质心)----"积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分概定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.四、向量代数和空间解析几何考试内容向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的以及平行、垂直的条件点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程考试要求1. 理解空间直角坐标系,理解向量的概念及其表示。2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。4.掌握平面方程和直线方程及其求法。5.会求平面与平面、平面与直线、 直线与直线之间的夹角,并会利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题。6.会求点到直线以及点到平面的距离。7. 了解曲面方程和空间曲线方程的概念。8. 了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。9. 了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求其方程。五、多元函数微分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限和连续的概念 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义。2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。4.理解方向导数与梯度的概念并掌握其计算方法。5.掌握多元复合函数一阶、二阶偏导数的求法。6.了解隐函数存在定理,会求多元隐函数的偏导数。7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8.了解二元函数的二阶泰勒公式。9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用---(调整知识点:将"二重积分、三重积分的概念及性质二重积分、三重积分的计算和应用"调整为"二重积分与三重积分的概念、性质、计算和应用")---- 两类曲线积分的概念、性质及计算两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(STOKES)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。4.掌握计算两类曲线积分的方法。5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。7.了解散度与旋度的概念,并会计算。8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等幂级数展开式函函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dlrichlei)定理 函数在[-l,l]上的傅里叶级数函数在[0,l]上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。2.掌握几何级数与p级数的收敛与发散的条件。3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。4.掌握交错级数的莱布尼茨判别法。5. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。6.了解函数项级数的收敛域及和函数的概念。7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法。8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。9.了解函数展开为泰勒级数的充分必要条件。10.掌握ex、sinx、cosx、ln(1+x)和(1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-L,L]上的函数展开为傅里叶级数,会将定义在[0,L]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。八、常微分方程考试内容常微分方程的基本概念 变量可分离的方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念---(将"了解微分方程及其解、阶、通解、初始条件和特解等概念"调整为"了解微分方程及其阶、解、通解、初始条件和特解等概念".)----2.掌握变量可分离的方程及一阶线性方程的解法.3.会解齐次方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')和y''=f(y,y').5.理解线性微分方程解的性质及解的结构定理.6.掌握二队常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5. 了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法规范正交基 正交矩阵及其性质考试要求1.理解n维向量的概念、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系-------(考试要求中将"4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系"调整为"理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系")-------5.了解n维向星空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组标准规范化的施密特(SChnddt)方法.8.了解标准正交基、正交矩阵的概念,以及它们的性质.四、线性方程组考试内容线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求 l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法----(考试要求中将"3.了解二次型和对应矩阵的正定性及其判别法"调整为"3.理解正定二次型、正定矩阵的概念,并掌握其判别法"。)-----概率论与数理统计初步一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其概率分布考试内容随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布考试要求 1.理解随机变量及其概率分市的概念.理解分布函数F(x)=P{X<=x}(-∞<x<+∞)的概念及性质.会计算与随机变量有关的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-l分布、二项分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为5.会求随机变量函数的分布.三、多维随机变量及其概率分布----- (二维随机变量及其分布(改为"多维随机变量及其分布"))----考试内容多维随机变量及其分布---(将"二维随机变量及其概率分布"调整为"多维随机变量及其分布")--- 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和相关性常用二维随机变量的概率分布两个及两个以上随机变量简单函数的分布---(将"两个随机变量简单函数的分布"调整为"两个及两个以上随机变量简单函数的分布")----考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质---(将"1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质 "调整为"1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质")---- 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维离散型随机变量的概率密度、边缘密度和条件密度.会求与二维连续型随机变量相关事件的概率.2. 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件---(将"2.理解随机变量的独立性及不相关的概念,掌握离散型和连续性随机变量独立的条件"调整为"2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件",)----3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布---(将"4.会求两个随机变量简单函数的分布"调整为"4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布")----四、随机变量的数字特征考试内客随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 矩、协方差 相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会根据随机变量的概率分布求其函数的数学期望。五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-…lace)定理 列维-林德伯格(Levy-Undbe)定理考试要求 1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)----( 将"2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)"调整为"2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)";)---3. 了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)"---(将"3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布的中心极限定理)"调整为"3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)")---六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 x2分布 t分布 F分布 分位数 正态总体的某些常用抽样分布考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解x2分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算.3.了解正态总体的某些常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4。理解区间估计的概念---(将"4.了解区间估计的概念"调整为"4.理解区间估计的概念")----会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八 假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和万差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验---(将"2.了解单个及两个正态总体的均值和方差的假设检验"调整为"2.掌握单个及两个正态总体的均值和方差的假设检验")---08数学考研大纲最新消息!(一)(二)您所查看的帖子来源于考研加油站考研论坛(bbs.kaoyan.com)08数学考试大纲晚出的原因,数学考试组专家于前几天才正式修订完 "农学数学" 考试大纲 导致今年大纲总体晚出. 并不像一些网站上说的有重大变化.数学命题组成员仍然是05 06 07原成员。这也就是说大家要特别重视近三年真题,有一定的风格。其中概率部分:3位老师,都是留美回国的著名教授,1位来自哈尔滨(相信大家都能猜出是那所高校的吧——哈工大),1位来自北京一所高校(没法确定是哪),另一位来自天津(本人估计应该是南大了)。都是一些老教授。另外08年考纲有一些变化,但并不是一些网站说的变化特别大。 我会另外发贴说明的。08数学考研大纲最新消息!(二)您所查看的帖子来源于考研加油站考研论坛(bbs.kaoyan.com) 接上帖:今年数学大纲在体形上会有一点小小的变化。 主要是选择,从10道改为8道了,抽出2道小题的分数合成1道大题的分数了,实际上2006年就是这样,只不过07年改为10道,现在又变回来了。 然后就是高数部分微积分会有一点点变动。请大家把握!~看完请回贴,谢谢你的参与。有了大家的支持我会及时发布新消息的。补充:08的大纲已经和脓血数学大纲递交高等教育出版社,月底将会面市。参考资料:http://bbs.kaoyan.com/forum-8-2.html

考研数学四是什么级别啊要考些什么

非性命也
核潜艇
2006年数学四考研大纲希望对考数学四的人有点用2006年全国硕士研究生入学考试 数学四考试大纲 数学四考试科目微积分、线性代数、概率论微 积 分一、 函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、隐函数 分段函数 基本初等函数的性质及其图形初等函数 简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1、 理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。2、 了解函数的有界性、单调性、周期性和奇偶性。3、 理解复合函数及分段函数的概念,了解隐函数及反函数的概念。4、 掌握基本初等函数的性质及其图形,理解初等函数的概念5、 了解数列极限和函数极限(包括坐极限和右极限)的概念。6、 理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其无穷小的关系。7、 了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,会应用两个重要极限。8、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、 一元函数微分学考试内容导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式的不变性罗尔定理和拉格郎日中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值考试要求1、 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数3、 了解高阶导数的概念,会求简单函数的高阶导数4、 了解微分的概念,导数与微分之间的关系,以及一阶微分的形式的不变性,会求函数的微分。5、 理解罗尔(Rolle)定理和拉格郎日中值定理、掌握这两个定理的简单应用。6、 会用洛必达法则求极限。7、 掌握函数单调性的判别方法及其应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题。8、 会用导数判断函数图形的凹凸性,会求函数图形的拐点和斜渐近线。9、 会作简单函数的图形。三、 一元函数的积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 广义积分 定积分的应用。考试要求1、 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。2、 了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式,以及定积分的换元积分法和分部积分法。3、 会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题。4、 了解广义积分的概念,会计算广义积分四、 多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算。考试要求1、 了解多元函数的概念,了解二元函数的几何意义。2、 了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质。 3、 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数 会求全微分,会用隐函数的求导法则。4、 了解多元函数的极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。5、 了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法,了解无界区域上的较简单的广义二重积分并会计算 五、 常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程一阶线性微分方程考试要求1、 了解微分方程及其解、阶、通解、初始条件和特解等概念。2、 掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。线 性 代 数一、 行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1、 了解行列式的概念,掌握行列式的性质。 2、 会应用行列式的性质和行列式按行(列)展开定理计算行列式。二、 矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1、 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵,反对称矩阵及正交矩阵等的定义和性质。 2、 掌握矩阵的线性运算、乘法、以及它们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质。 3、 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。4、 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。5、 了解分块矩阵的概念,掌握分块矩阵的运算法则。三、 向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法。考试要求1、 了解向量的概念,掌握向量的加法和数乘运算法则。2、 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。3、 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。4、 了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。5、 了解内积的概念、掌握线性无关向量组正交规范化的施密特(Schmidt)方法。四、 线性方程组考试内容线性方程组的克莱母(又译:克拉默)(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解。考试要求1、 会用克莱母法则解线性方程组。2、 掌握非齐次线性方程组有解和无解的判定方法。3、 理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的方法。 4、理解非齐次线性方程组的结构及通解的概念。 5、掌握初等行变换求解线性方程组的方法。五、 矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵。考试要求1、 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。2、 理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。3、 掌握实对称矩阵的特征值和特征向量的性质.概 率 论一、 随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算。2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握计算概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式等。 3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。二、 随机变量及其概率分布考试内容随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布考试要求1. 理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x} (-∞<x<+∞)的概念及性质;会计算与随机变量相联系的事件的概率。2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2) 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为5.会求随机变量函数的分布。三、 随机变量的联合概率分布考试内容随机变量的联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布。考试要求1、 理解随机变量的联合分布函数的概念和基本性质。2、 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握两个随机变量的边缘分布和条件分布。3、 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。4、 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。5、 会根据两个随机变量的联合概率分布求其函数的分布;会根据多个独立随机变量的概率分布求其函数的分布。四、 随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫不等式 矩、协方差 相关系数及其性质。考试要求 1、 理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数学特征的基本性质,并掌握常用分布的数字特征。 2、 会求随机变量函数的数学期望。3、了解切比雪夫不等式。五、 中心极限定理考试内容隶莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理。考试要求1、 了解隶莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。试 卷 结 构(一) 题分及考试时间试卷满分为150分,考试时间为180分钟。(二) 内容比例高等数学 约50%线性代数 约25%概率论 约25%(三) 题型比例填空题与选择题 约40%解答题(包括证明)约60%参考资料:http://bbs.kaoyan.com/viewthread.php?tid=1165052数学四要考: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程);2、线性代数;3、概率论。 其他的:数学一: 1、高等数学(函数、极限、连续、一元函数的微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);2、线性代数;3、概率论与数理统计。 数学二: 1、高等数学(函数、极限、连续、一元函数微积分学、微分方程);2、线性代数。 数学三: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);2、线性代数;3、概率论与数理统计。