其寒凝冰
很荣幸能为你解答!2011考研数学三大纲考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构试卷满分为150分,考试时间为180分钟答题方式为闭卷、笔试三、试卷内容结构:微积分 56%;线性代数 22%;概率论与数理统计 22%。四、试卷题型结构:单项选择题选题 8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分微 积 分一、函数、极限、连续考试内容:函数的概念及表示法 函数的有界性单调性周期性和奇偶性 复合函数反函数分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 、 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求 :1理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 2了解函数的有界性单调性周期性和奇偶性 3理解复合函数及分段函数的概念,了解反函数及隐函数的概念4掌握基本初等函数的性质及其图形,了解初等函数的概念5了解数列极限和函数极限(包括左极限与右极限)的概念6了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7理解无穷小的概念和基本性质掌握无穷小量的比较方法了解无穷大量的概念及其与无穷小量的关系 8理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理介值定理),并会应用这些性质二、一元函数微分学考试内容:导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数反函数和隐函数的微分法 高阶导数 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程 2掌握基本初等函数的导数公式导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数 3了解高阶导数的概念,会求简单函数的高阶导数 4了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分 5理解罗尔(Rolle)定理拉格朗日( Lagrange)中值定理了解泰勒定理柯西(Cauchy)中值定理,掌握这四个定理的简单应用 6会用洛必达法则求极限 7掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用 8会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线 9会描述简单函数的图形 三、一元函数积分学 考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用 考试要求 1理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法 2了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法 3会利用定积分计算平面图形的面积旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题 4了解反常积分的概念,会计算反常积分 四、多元函数微积分学 考试内容:多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值最大值和最小值 二重积分的概念基本性质和计算 无界区域上简单的反常二重积分 考试要求 1了解多元函数的概念,了解二元函数的几何意义 2了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质 3了解多元函数偏导数与全微分的概念,会求多元复合函数好的,谢谢中国考研网,考试大纲,百度上有现成的,自己百度吧,好的,谢谢