微乎其微
金融工程专业 它是以金融工程为研究对象,以金融创新为核心,综合运用现代金融理论、工具、技术与方法,创造性地解决金融问题的一门新兴金融学科,具有较强的应用性与技术性。主要培养金融产品和金融工具的设计与开发人才、大型企业的财务管理人才和金融技术与开发及金融风险管理人才。 学生毕业后适合在证券与期货经营和咨询机构、其它金融机构、证券监管机构、企业集团和上市公司、国家综合经济调控部门等单位从事实务和研究开发工作。 毕业生将熟练掌握一门外语,熟悉国际银行业的通行规则,掌握微观金融企业原理与操作技能;熟悉各种现代金融工具的特性、功能并具有相应的操作能力,具备较强的市场分析技能和业务素质,能为客户设计个性化的投资方案;了解基本的资产定价模型,具有处理银行、证券、投资等相关业务的能力。 本专业文理兼招,但要求文科考生有较好的数学基础。 专业特色:我国的金融工程专业是参照国外的金融理论研究成果和实践,并根据我国加入WTO后金融业的变化情况而设立的新兴专业,设有银行风险与投资风险两个方向。本专业学生的主要专业知识结构包括金融基础理论;各种金融工具知识;数理知识和网络技术知识;主要专业能力结构包括风险分析和收益预测能力;运用数学模型的能力;无套利均衡分析能力;金融工具定价合理性分析的能力;金融工具合理组合的能力;计算机操作能力;查阅外文资料和用外语进行各种形式交流的能力;经过一定时期的实践后,具有调控宏观金融运行的最基本的能力;具有从事金融工程教学与研究的潜在的能力,有进一步培养的价值;通过团队合作,开发设计新的金融工具的能力。 毕业生应获得以下几方面的知识和能力: 1. 掌握马克思主义经济学基本理论和方法; 2. 掌握西方经济学、金融学的理论和方法; 3. 了解基本的资产定价模型,具有处理银行、证券、投资等相关业务的基本能力; 4. 熟悉各种现代金融工具的特性、功能并具有相应的操作能力,能为客户设计个性化的投资方案; 5. 能运用计量、统计、会计、金融工程等方法进行投资咨询分析和研究; 6. 熟悉国家有关经济、金融的方针、政策和法规; 7. 了解本学科的理论前沿和发展动态; 8. 能够熟练地掌握一门外语,具有较强的读、写、听、说、译及信息获取与处理能力。 主要课程:金融学、财政学、金融工程、衍生产品的定价理论、金融数学、公司财务、商业银行业务与经营、证券投资学、计量经济学、随机分析与随机控制、信息经济学、多元统计分析等。 主要开办学校; 中国人民大学 北京科技大学 中央财经大学 对外经济贸易大学 天津 南开大学 天津财经大学 上海 上海财经大学 上海对外贸易学院 安徽 安徽财经大学 江西 江西财经大学 浙江 浙江财经学院 湖北 武汉大学 湖北经济学院 广东 广东商学院 云南 云南财贸学院 四川 西南财经大学 黑龙江 哈尔滨商业大学 辽宁 东北财经大学 福建 厦门大学 港澳台 香港大学 香港理工大学财务工程学乃金融创新之科学,其结合财务经济学、数理统计及高等数学为一体。运用财务工程学可进行新金融商品之评价分析、风险规避,及发展套利策略之操作。因此,财务工程学乃金融相关从业人员务必学习并灵活运用之专业知识。本会特举办财务工程学全修班,由浅入深地完整介绍并活用,以因应当今期货、证券、银行及保险从业人员提升专业素养的需要。以下网址是台湾2004年财工研讨会的内容http://www.cafie.nccu.e.tw/essay.htm请参考财务工程简介课程大纲 Unit 1: Introction to Financial EngineeringThe Definition of Financial Engineering The Environment of Financial Engineering The Evolution of Derivatives Financial Engineering and Risk Management The Case of Financial Engineering in Taiwan Unit 2: Equivalent Martingale Measures and Risk-Neutral PricingRisk-Neutral Pricing: A Binomial Example An Economic Interpretation of Risk-Neutral Probabilities Arbitrage and Non-Existence of Risk-Neutral Probabilities Risk-Neutral Probabilities and Completness A Black-Scholes Example Unit 3: Alternative Option Pricing ModelsOption Pricing Models Under Stochastic Interest Rates Option Pricing Models Under Stochastic Volatility Option Pricing Models Under Jump Option Pricing Models With Transaction Costs Applications Unit 4: Term Structure Models of Interest RatesIntroction Issues of the Term Structure Model Vasicek (1977) Model Cox, Ingersoll and Ross (1985) Model Multi-Factors Models Ho and Lee (1986) Model Heath, Jarrow, and Morton (1990, 1992) Model Hull and White (1990) Model Black, Derman and Toy (1990) Model Empirical Issues Unit 5: Interest Rate DerivativesBond Options Caps and Floors Interest Rate Swaps Swaptions Differential Swaps Equity Swaps Convertible Bonds Unit 6: Exotic OptionsClassifications: Path dependent vs path independent Early exercise problem Single variable vs. Multiple Variables Asian Options Lookback/Binary/Barrier Options Rainbow Options Bermudan Options Pricing Issues Hedge Issues Glossary of Terms:Asian Options: An option with a payoff dependent on the average price of the underlying asset ring a specified period. Barrier Options: An option whose payoff depends on whether the path of the underlying asset has reached a barrier (i.e., a certain predetermined level). Binary Options: Either a cash-or-nothing option or an asset-or-nothing option. Black-Scholes Model: A model for pricing European options on stocks, published by Fischer Black and Myron Scholes in 1973. Bond Options: An option in which a bond is the underlying assets. (Interest Rate) Caps (Floors) : An option that provides a payoff when a specified interest rate is above (below) a certain level. Convertible Bonds: Corporate bond that can be converted into a predetermined amount of the company's equity at certain times ring its life. Derivative: Instrument whose price depends on or is derived from the price of another asset. Differential Swaps: Swap in which a floating rate in one currency is exchanged for a floating rate in another currency, with both rates being applied to the same principal. Equity Swaps: Swap in which return on an equity portfolio is exchanged for either a fixed or a floating rate of interest. Hedge: A trade designed to rece risk. Interest Rate Swaps: An exchange of a fixed rate of interest on a certain notional principal from floating rate of interest on the same notional principal. Lookback Options: Option whose payoff depends on the maximum or minimum of the asset price achieved ring a certain period. Option: The right to buy or sell an asset. Swaptions: Option to enter into an interest-rate swap in which a specified fixed rate is exchanged for a floating rate. Term Structure: Curve relating interest rates to maturity. Transaction Cost: Cost of carrying out a trade. (Equal to commissions plus the difference between the price obtained and the midpoint of the bid-offer spread.) Volatility: Measure of the uncertainty of the return realized on an asset. References:Vasicek, O.A. (1977). An Equilibrium Characterization of the Term Structure, J. of Financial Economics 5 177-188. Cox, J.C., J.E. Ingersoll, and Ross, S.A. (!985) A Theory of the Term Structure of Interest Rates, Econometrica 53 385-407. Ho, T.S.Y. and Lee, S.B. (1986) Term Structure Movements and Pricing Interest Rate Contingent Claims, J. of Finance 41 1011-1029. Heath, D., Jarrow, R. and Morton, A (1990) Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation, Journal of Financial and Quantitative Analysis 25 419-440. Heath, D., Jarrow, R. and Morton, A (1992) Bond Pricing and the Term Structure of the Interest Rates: A New Methodology, Econometrica 60 77-105. Hull, J.C. and White, A. (1990) Pricing Interest Rate Derivative Securities, Review of Financial Studies 3 573-592. Black,F., Derman, E. and Toy, W. (1990) A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options, Financial Analysts Journal 33-39. (参见http://www.math.ntu.e.tw/~hchen/Finance/outline.html)