欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

年产30万吨合成氨及52万吨尿素工程可行性研究报告

时有所用
所谓
去百度文库,查看完整内容>内容来自用户:熊卫丽####宏裕科技股份有限公司30万吨年合成氨、52万吨年尿素工程可行性研究报告概述1第一章项目单位基本情况21.1企业简介21.2企业组织管理31.3企业的发展优势4第二章项目基本情况62.1项目概述62.2项目建设的背景72.3市场分析82.4项目工艺技术92.5配套建筑物及其他设施情况182.6项目投资估算情况说明192.7项目资金筹措说明252.8项目建设条件落实情况252.9项目实施进展情况26第三章项目招投标27第四章产品能耗与节能284.1分析评价依据284.2项目概况294.3项目所在地能源资源条件以及项目对所在地能源供应情况的影响304.4项目用能方案、用能工艺和用能设备304.5项目能源消耗量、能源消费结构、能源效率水平及能源管理情况324.6节能措施分析评价334.7节能措施建议334.8结论34第五章建设用地情况35第六章环境、消防和劳动安全分析366.1项目环境影响情况366.2项目消防情况说明416.3项目劳动安全情况说明41第七章财务分析437.1编制依据437.2基础数据437.3流动资金估算447.4项目总投资447.5投资使用计划与资金筹措457.6年销售收入和年销售税金及附加估算457.7总成本费用估算457.8利润总额分配467.9财务盈利能力分析467.10清偿能力分析公司有科研实力雄厚的农药研究中心,产品科技含量高,主导产品技术国内领先,生产成本

合成氨合成塔国外研究现状 要详细的 论文上用 求大神告知

反骨仔
真的不会写的话,我提供资料,论文题目应该是对研究对象的精确具体的描述,这种描述一般要在一定程度上体现研究结论,因此,我们的论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。

碳捕捉和封存技术 根据文意解释什么是“碳捕捉和封存技术”

点与线
盒子
碳捕获和储存技术,CCS 2011年12月7号,在哥本哈根举行的联合国气候变化大会如期帷幕,来自192个国家和地区的代表出席了本次会议。几天下来火热的大会发言,大会仿佛变成了争吵。 虽然国家减排目标拔河,如何实现这些减排目标,将是未来国家的关注,因此碳捕获技术再次成为媒体关注的焦点。 技术的幻想,如人造火山或空间反射镜不靠谱,相对于二氧化碳捕集,封存技术(CCS)被认为是拯救地球的。我们都知道,人类要防止全球变暖节能减排,特别是减少二氧化碳的排放量。减排路径,但煤炭为主要能源,减少煤炭的使用代价高CCS成为重要的替代那些谁不希望改变能源消费结构中的国家,这极大地吸引力。 人可能会觉得有点怪碳捕获技术,不知道它,“当今世界上最流行的气候变化领域的国际最前沿的,最重要的课题之一,国际政治领导人都投票极大的关注。“在去年年底,央行行长周小川,谈论了”碳捕获“的意思,在这方面,金融业是有希望的。根据专家的意见,在浙江大学,国外许多研究机构已经嗅到了巨大的诱惑,静静地针对国内碳排放市场。 原始大气中的二氧化碳浓度是非常高的,是不适合于人类的生存,地球固化埋在地下的二氧化碳(即成煤成油),从而减少了在大气中的二氧化碳的浓度,它成为适合人类生存。现在,相反的人类通过开煤矿,石油,二氧化碳埋在地下挖了出来,然后释放到大气中,大气中二氧化碳的浓度增加,温室效应随之而来的一系列的影响。 在现实中,这是工业革命的嘲讽,疯狂的化石能源的使用和报复。后工业时代是注定要解决这些麻烦的工业革命。 1850年全球二氧化碳排放量只有200万吨,提高到2005年的2.59亿吨。其中,全球化石燃料的消耗主要集中在工业,电力和交通运输部门的二氧化碳排放量的全球二氧化碳总排放量的约63.09%至72.96%。 现在,世界上的国家元首希望人类在2050年,气候控制不超过1850摄氏2度以上。 如何减少大气中的二氧化碳的排放量,科学家们想到了各种办法。 第一步是“碳捕获”。据方教授汪孟祥成熟的化学吸收法,简单来说,就是利用CO2和一定的吸水性,从烟气中分离CO2气体之间的化学反应,科学家们发现以上各种优异的性能和环保的吸收。也有一种方法,称为“膜分离,化石燃料的燃烧产生的烟气时,通过该膜的分类过程中,有的会溶解并通过,但某些通”块“。为了提高效率的二氧化碳的排放量,科学家们还发明了一种用纯氧气中燃烧的火焰切割方法,使高纯度的二氧化碳排放量。据悉,国际上包括中国在内,如美国,英国,挪威有许多碳捕获试点项目,包括碳捕获效率可高达90%。 “碳捕获”是不是最难此外,“即使是捕捉到的二氧化碳回收,生产碳酸饮料,最终CO2或排出大气中,科学家们需要CO2的安全和永久保存“,这种碳捕获和储存技术称为缩写碳捕获和储存(CCS)技术。 科学家们目前的主要思路“封在地下,包括深海储存和地质储存。让我谈谈有关的“深海水存储,你知道,海洋是世界最大的二氧化碳水库,总的50倍以上的大气中存储,发挥的重??要作用,在全球碳循环中。CO2的海洋储存,主要是海洋储存地点运送到通过管道或船舶的CO2,然后注入二氧化碳的海底,CO2在海中的底部的水最后碳化和保存,这种方法也有一些隐患:“CO2的船舶用高压到的海底的情况下,CO2泄漏导致灾难性的后果,特别是海震经常。“ 科学家们认为,比较可行的地质储存,二氧化碳盐水层在这个深度1公里到2公里到地面,压力将二氧化碳转换成所谓的“超临界流体”和硫化速度慢,像地下的煤制油,在这样的状态下,二氧化碳是不容易泄露。“另外,这片岩体结构比较好,有超过足够的空间来容纳二氧化碳和连续性,是足够大的面积?是预计将达到十万亿吨的全球储量的咸水含水层,可存储1000 到现在为止,全球共有三个成功的CCS项目的进展。 Weyburn的Midale项目垃圾填埋场产生的二氧化碳通过煤的气化厂在北达科他州,萨斯喀彻温省的一个废弃的油田BP业务阿尔及利亚萨拉油田项目提取生产的天然气中的二氧化碳从本地输入地下,国家石油公司挪威的大型石油和天然气公司也有两个类似的项目在北海。数百个CCS项目正在建设中的世界。 在国内,继北京华能高碑店项目,华能石洞口第二电厂碳捕获项目7月在上海启动,该项目总投资1.5亿元,将建成年底的年,预计每年捕获10万吨二氧化碳,并声称自己是世界上最大的燃煤电厂碳捕获项目。 ,虽然CCS技术仍处于实验阶段,其技术能力,收到理想的效果尚未被证实,但高昂的成本已经叫人说不出话来。根据去年公布的一份报告由美国麻省理工学院,每吨二氧化碳捕获和处理压力的超临界流体,运输一吨二氧化碳,以填补埋葬花30-50元10-20美元,这是说元一吨的二氧化碳在大气中的排放量,电厂将不得不支付40-70美元,目前在欧盟碳价格,较8-10欧洲/吨,这个数字的中间值??的碳价格也接近联合国政府间气候变化专门委员会(IPCC)的建议。 方教授汪孟祥给记者算了一笔简单:例如,燃烧一吨煤炭两吨的二氧化碳排放量现在煤炭价格600元/吨,再加上碳排放量的增加超过600元,成本增加了一倍,而燃烧一吨煤炭发电300度摊到每度电的电价增长了70% - 90%,而在生产,运输,销售价格每件商品的碳核算的增加,最后将能够计算出碳排放量的商品价格。 “征收的碳税,这个数字是非常可观的。”难怪专家说,全球碳市场最有潜力的石油贸易的碳排放交易后,将成为最大的市场在未来。 同时,国家资本已经开始觊觎这个行业,欧盟委员会已经明确表示,欧盟计划8十亿欧元的CCS技术研究领域的直接投资,发展。 “对于我们来说,这既是一个挑战,也是机遇,目前,国外许多机构已经瞄准国内碳排放市场,如浙江大学建立了技术合作伙伴关系,与欧盟,美国,英国能源部,其实,我们国内的碳捕获技术成本相比,许多国外要低,如果你能抢占了部分市场份额仍然是非常有前途的,但不幸的是,一些国内企业愿景。方教??授汪孟祥(青年时报) ------------------- 碳捕获技术简介四个主要不同类型的CO2收集和采集系统:后燃烧(烟道气体分离)分离燃料中分离之前(富含氢的气体线)中,富氧燃烧和工业分离(化学循环燃烧),每个捕获技术其成熟的技术特征,在以下的表中。选择捕捉系统,二氧化碳浓度的气体流,该气体流的压力和燃料的种类(固体或气体)都被认为是一个重要的因素。 > 对于一个大的分散二氧化碳排放源的数量是难以实现碳的收集,因此碳捕获的主要目标是像一个集中的化石燃料电厂,钢铁厂,水泥厂,炼油厂,合成氨厂CO2的排放源。 >分离系统捕获的二氧化碳排放量,主要有三类:燃烧系统,富氧燃烧系统,预燃烧系统。燃烧系统介绍 燃烧后捕获和分离是分离烟??道气中CO2和N2。化学溶剂吸收法是目前最好的燃烧后CO2捕集方法,高捕集效率和选择性,降低能源消耗和成本的集合。 />化学吸收。法国除了化学溶剂吸收法,吸附法,膜分离法,使用可逆的化学反应之间的碱性溶液与酸性气体,烟道气不仅含有二氧化碳,氮气,氧气,和H 2 O,硫氧化物(SOx),氮氧化物,粉尘,氯化氢,氟化氢和其他污染物还包含杂质的存在下,将增加的成本的捕获和分离前的烟道气进入吸收塔,前处理的需要,包括洗涤冷却,除了水,静电除尘,脱硫和脱氮,等。 烟气预处理进入吸收器,吸收器的温度保持在40?60℃,CO 2被吸收剂吸收,通常与该溶剂是一种胺吸收剂(如单乙醇胺MEA)的水分平衡系统,并除去溶剂的溶剂蒸汽的气体中,然后烟道气到洗涤容器中,在液滴离开吸收塔后的二氧化碳的吸收富含的溶剂中通过热交换被泵送到再生塔的顶部。获得再生的吸收剂在温度为100?140℃和稍高于大气压的水蒸汽通过冷凝器返回到再生塔,而二氧化碳离开再生塔繁殖基地溶剂通过热交换器和冷却器被泵送回吸收塔。富氧燃烧系统 富氧燃烧系统与纯氧气或富氧空气代替作为介质的化石燃料燃烧的燃烧产物主要是二氧化碳和水蒸汽,在除过量的氧气,以确保完全燃烧,以及燃料的氧化产物,燃料或空气泄漏到系统中的所有组件惰性组分,在高CO2的烟气冷却后蒸汽冷凝液中CO2含量的80%?98%。这种高浓度的CO2被压缩,干燥和进一步的净化成管道的存储。密度超临界通过一个管道,其中的惰性气体的内容需要被降低到一个较低的值,以避免增加,可能是由于在两相在管道中流动的二氧化碳的临界压力,其特征在于,所述的酸性气体成分的输送也有必要删除除了二氧化碳,干燥后,在管道中,以防止冷凝水和腐蚀,并允许使用传统的碳钢材料。 ,由于较高的CO2浓度的氧增浓燃烧系统,使捕获分离的成本较低,但富氧目前供应氧气生产的成本就越高,通过空气分离方法,包括使用聚合物膜,变压吸附和低温蒸馏。 />燃烧前捕获系统介绍的燃烧前捕获系统主要有两个阶段的反应。 首先,化石燃料,第一与氧或水蒸汽反应,以产生称为合成气)的混合气体(主要是CO和H 2组成的,被称??为的蒸汽重整反应,其中,蒸汽,必须在高温下进行的,对于液体或气体燃料与O2被称为“部分氧化”,而反应固体燃料与氧气,直到合成气被冷却,然后通过蒸汽重整反应,合成气中的CO转化为所谓的“气化”。二氧化碳,并产生更H2。最后,从该混合物中的二氧化碳分离和H2,H2,二氧化碳的含量高达15%至60%的干的混合物,总压力为2?7MPa。C??O2从混合气体的分离和捕获和储存,H2被用于作为燃气联合循环燃料馈进气涡轮机,??燃气轮机和蒸汽轮机联合循环发电。 这个过程中,考虑碳捕获和储存煤气化联合循环(IGCC)发电方法,包括:从气体中分离CO2混合物的CO2和H2。变压吸附,化学吸收二氧化碳(CO2从混合气体通过化学反应除去,并在减压和加热,与单独的二氧化碳从烟道气中的燃烧后等的情况下发生的可逆反应),物理吸附(通常用在高CO2分压或高总压的混合气体分离),膜分离(聚合物膜,陶瓷膜),等等。碳捕获和封存技术碳捕获和封存(CCS)是工业和能源的CO2排放源的收集,运输和安全存储的地方,从大气过程的长期隔离。主要由捕获,运输,封存的CCS三通碳捕获 CO2捕获,是指从化石燃料的燃烧产生的烟气中的二氧化碳的分离,和压缩过程。 对于大量的分散的二氧化碳排放量的来源是很难实现的碳的收集碳捕获的化石燃料电厂,钢铁厂,水泥厂,炼油厂,合成氨厂排放源分离系统。捕捉化石燃料发电厂是二氧化碳浓度的主要目标主要有三种,燃烧后捕捉系统捕捉系统氧化燃料燃烧前捕获系统。 CO2捕获已被用于一些工业应用中的化学吸附过程中一个在马来西亚的工厂,分开的燃气电厂烟气流每年0.2× 106吨CO2的尿素生产。物理溶剂法煤的气化厂在北达科他州,每年从气流中分离,分离出3.3×106吨CO2合成天然气的生产,捕获的CO2提高原油采收率项目在加拿大。 低碳交通 运输的CO2压缩CO2输送管道或运输工具的存储放在第一条长距离二氧化碳管道投入运行,在20世纪70年代初在美国,超过2 500公里CO2管道,通过这些管道,每一个约40×106吨CO2提高原油采收率和存储的的碳的封存 CO2输送到得克萨斯州,到达存储的地方,如CO2被注入到地下咸水含水层的地质结构,被遗弃的石油和天然气领域,如煤矿,地质结构层或深的海床或海床以下。这个过程中涉及的大量的研究,发展和普遍应用在石油和天然气勘探和生产技术,如水泵向地下注入CO2,CO2在井的底部穿孔或筛入岩层。 BR />除了CO2回注油田提高采收率,注入的CO2,可以恢复在煤层中的煤层气,这个过程通常被称为提高石油采收率(EOR)和加强煤层气(ECBM)有三个产业规模(大于1×108tCO2 / A)采用这种技术的项目:碳的姒莱普,北海内尔(SLEIPNER)的项目,加拿大的韦本项目(Weyburn的)和阿尔及利亚的萨拉赫(沙拉)项目。运输技术的引进 CO2运输,最可行的办法是,使用管道 管道是一个成熟的市场,技术,二氧化碳气体压缩可以增加密度,可降低运输成本,也可以使用航运CO2绝缘箱安装在液体CO2运输的油轮在某些情况下,从经济的角度来看更具吸引力,特别是需要长途运输或CO2运往海外,但由于需求有限,这种情况下,并因此运输规模较小。在程序技术上,公路和铁路罐车可行的。然而??,除了小规模的运输,这种运输系统,管道和船舶相比,目前没有经济不太可能为大型运输。 ,美国和其他国家在管道运输技术已经非常成熟,需要解决的问题,如何降低运输成本。 运输成本主要取决于管道的长度,管道直径,捕获(包括压缩)成本是非常高的,因此,运输成本低的总成本的比例。只要捕获和储存成本较低,或为了获得一些其他的好处(如提高石油采收率)许多国家在长途运输成本高,远距离运输的CO2。如美国的长距离传输高压液体CO2提高原油采收率,使用,最长的管道羊山(羊山)管道,科罗拉多州南部CO2输送到得克萨斯州的Permian盆地,距离656公里。碳封存技术简介碳汇是指捕捉,压缩的CO2运输到指定地点长期封存过程。目前,主存档地质储存,海洋储存和碳酸锰矿石封存。此外,一些工业生产过程,在生产过程中和存放少量的CO2抓获。 然而,从普通电厂排放,未经处理的烟气中含有约3%至16%的二氧化碳,压缩率比纯的CO2小得多,从燃煤电厂出来的压缩烟草道气体二氧化碳含量只有15%的所存储的1吨二氧化碳大约需要68立方米存储空间,在这样的条件下,因此,只有从烟道气中分离二氧化碳,为了充分和有效地地下处理。的地下CO2封存,以防止CO2泄漏或迁移,需要密封整个存储空间,因此,选择合适的密封盖层具有良好的密封性能也很重要,它可以发挥的“护身符”的角色,以确保长期的二氧化碳储存在地下。 更有效的方法是使用常规的地质圈闭构造,包括气田,油田含水层对于前两种,因为他们是人们熟悉它们的结构和地质条件的基础上的人类的能源系统的一部分,所以用它们来存储二氧化碳是更方便和符合成本效益的; 含水层,因为它非常受欢迎,因此具有非常大的潜在二氧化碳封存 根据碳汇,碳汇的方式进入地质储存,海洋储存,碳酸盐矿石固存以及工业用固定的地点和方式,每个密封方式不同的技术,它们的发展状况表中下面 -------- - 的碳的捕获和封存技术的发展现状, CCS技术,由于其一致性与现有的能源系统的基本结构国际科学界和工业界的密切关注下,由能源资源的限制,该技术是特别普遍关注的工业化国家,美国的密切关注,欧洲联盟和加拿大已经开发出一种技术研究计划,开展CCS技术的理论,试验,示范和应用的研究,根据国际能源总署统计,截至目前,全球总的碳捕获131个商业项目,捕捉42的R&D项目,地质存款示范项目20 61 R&D项目,地质埋存,比较知名的挪威Sleipner项目Weyburn项目在加拿大和阿尔及利亚在 Salah项目。 BR />近年来,欧洲和美国开始2002年11月,美国能源部,美国电力能源公司(AEP)峰值功率的火电厂为主要存储对象的试验地下储存二氧化碳的排放量。厂在西弗吉尼亚州口二氧化碳地质存储方法开展研究项目; 2003年2月,欧洲委员会资助的二氧化碳存储研究项目的开展,丹麦,德国,挪威和英国的性质的CO2水库蓄水电厂的排放量;全世界有几个示范项目250MW规模的IGCC燃煤电厂的CCS试点项目世界碳封存领导论坛在墨尔本举行的澳洲在2004年9月14日证实,2010年,10次实验加强国际合作,以促进科技项目,参与国家对碳汇的国际合作表示出浓厚的兴趣项目和实验表明 CCS技术是一种很大的潜力,减少二氧化碳排放量,尖端技术,该技术的潜力,因此,中国也应该密切关注的研究现状和CCS技术及相关技术的最新进展,在规划的早期阶段,理论和实验示范应用。情况下,在经济发展和环境保护实现双赢的局面。: 在美国,例如,美国在2000年开始由美国能源部主持的正式启动二氧化碳封存研究和开发项目,同时研究陆地生态系统(森林,土壤,植被等)为主要研究领域包括地质封存和海洋储存二氧化碳的隔离作用,并制定了详细的技术路线图的详细信息,请参阅下表2005年美国进行了25个CO2地下结构注入,存储和监控的田间试验,并已进入验证阶段。 ------------------- 发展碳捕获和储存技术在中国的发展前景和行动中国的国情的发展阶段,能源结构决定在碳捕获和储存技术(CCS)是一个重要的战略选择,为中国的气候变化,在全球碳捕获和存储最有潜力的市场,虽然该技术仍然在研究,开发和示范阶段,但国内多所大学,科研机构和企业的积极行动和进展,CCS中心建设可行性研究也正在进行全面的了解,CCS技术本身有问题是对中国具有重要意义,提高R&D能力,应对气候变化的能力和竞争力...... />中国应对气候变化的碳捕获和储存“生效的”京都议定书“人类共同应对气候变化的进入增加了希望,但还是比较简单的,使用可再生能源和其他技术手段,以减少二氧化碳的排放量,提高能源利用效率,能源驱动的现代社会中,化石燃料将继续是主要的能源供应二氧化碳和其他温室气体排放面临巨大压力温室气体浓度稳定在一定的水平,需要采取综合在这种情况下,IPCC碳捕获和储存技术,减少废气排放,以共同灵活处理与温室气体的减排。所谓的二氧化碳,及时收集收集和储存的措施产生的二氧化碳的化石燃料的燃烧,中期和长期储存在天然地下水库,以减少二氧化碳排放到大气中的这种技术不仅意味着全球温室气体排放量的重要选择,其根本措施,以减少大气中二氧化碳的浓度,实现近零排放的能源使用。近年来,中国经济的快速增长对能源的需求是不断增加的温室气体排放量已位居世界前列,而中国是一个深刻的影响,在发展中的国家,极端天气事件气候变化,煤炭为基础的能源和火电厂的二次能源结构,碳捕获和存储的频率是非常广阔的应用前景在中国,中国的碳排放量减少和应对气候变化将也成为一个重要的技术选择。中国CCS:在R&D阶段从20世纪70年代起,中国就开始关注二氧化碳提高石油采收率的研究与国际先进的做法相比,前二氧化碳捕集CCS在中国的研究和发展,仍然是只适用于一些高纯度的二氧化碳,而且比较容易捕捉到炼油,氨,氢,天然气净化等工业生产过程的碳。整体外观二氧化碳捕获和存储仍处于实验室阶段,但主要是由燃烧后捕获,工业应用主要是提高石油采收率国家重大问题。但是,近年来,中国对CCS的研究做了很多的工作,从2003年开始,中国政府参加的碳捕获领袖论坛“973计划”,包括了“863计划”CCS。此外,华能,神华大公司的规划,研究,及示范CCS年7月16个,二零零八年,中国的第一个燃煤电厂碳捕集示范工程 - 华能北京热电厂电厂二氧化碳捕集示范工程正式建成投产,标志着二氧化碳气体减排技术在中国的燃煤发电领域的应用第一次。第一个CCS中心作为一个发展中的国家,煤炭信息研究院合作进行了建立与国际能源机构的“CCS中心将积极推动CCS技术在中国的开发和示范,技术转移和信息共享。 CCS面临的现实挑战 CCS作为温室气体减排的基本技术方法有很大的发展潜力,但是它的应用将极大地改变传统形式的能源生产,影响了经济成本;地质构造,海洋生态,人类健康的地球循环的系统具有很大的不确定性的影响居住环境的人类,应用程序将也改变人们现有的认知,现有的法律,法规和政策,社会宽容。的影响,CCS面临的问题: >成本太高。目前估计CCS的应用将使发电成本增加约0.01-0.05美元/千瓦时,超过20%的能源消耗,这将阻碍发展CCS 健康,安全和环境风险。 CCS的应用,将有可能与管道运输的风险,地质封存泄漏,二氧化碳注入海洋的风险所造成的风险,这些风险会影响人体健康,安全和生态环境不可预见的CCS的潜在风险一直是主要的关注社会是难以接受的,但也阻碍CCS发展。 缺乏相关的法律和法规,不具备适当的法律框架,以促进地质封存的实施,也没有考虑到长期负债。 缺乏的源和汇的匹配,风险评估和监测等问题的认识。的CCS不足之处的认识;捕获,运输和封存技术本身,还深入研究;距离的二氧化碳的主要来源,也是为了更好地理解和储存点和捕获,运输和存储成本曲线的建立;需要全球,区域和地方层面提高存储容量的估计,以便更好地了解长期存储,流动和泄漏过程中,等。

合成氨的固氮研究

常卒乎阴
鹿柴
化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。 固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。中国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。

有不要钱的煤炭市场投资可行性报告吗

魔法粉
万川归之
煤制油我国总的能源特征是“富煤、少油、有气”。2003年我国总能源消费量达11.783亿吨油当量,其中,煤炭占67.86%,石油占23.35%,天然气占2.5%,水电占5.43%,核能占0.83%。我国拥有较丰富的煤炭资源,2000~2003年探明储量均为1145亿吨,储采比由2000~2001年116年下降至2002年82年、2003年69年。而石油探明储量2003年为32亿吨,储采比为19.1年。在较长一段时间内,我国原油产量只能保持在1.6~1.7亿吨/年的水平。煤炭因其储量大和价格相对稳定,成为中国动力生产的首选燃料。在本世纪前50年内,煤炭在中国一次能源构成中仍将占主导地位。预计煤炭占一次能源比例将由1999年67.8%、2000年63.8%、2003年67.8%达到2005年50%左右。我国每年烧掉的重油约3000万吨,石油资源的短缺仍使煤代油重新提上议事日程,以煤制油己成为我国能源战略的一个重要趋势。煤炭间接液化技术由煤炭气化生产合成气、再经费-托合成生产合成油称之为煤炭间接液化技术。“煤炭间接液化”法早在南非实现工业化生产。南非也是个多煤缺油的国家,其煤炭储藏量高达553.33亿吨,储采比为247年。煤炭占其一次能源比例为75.6%。南非1955年起就采用煤炭气化技术和费-托法合成技术,生产汽油、煤油、柴油、合成蜡、氨、乙烯、丙烯、α-烯烃等石油和化工产品。南非费-托合成技术现发展了现代化的Synthol浆液床反应器。萨索尔(Sasol)公司现有二套“煤炭间接液化”装置,年生产液体烃类产品700多万吨(萨索尔堡32万吨/年、塞库达675万吨/年),其中合成油品500万吨,每年耗煤4950万吨。累计的70亿美元投资早已收回。现年产值达40亿美元,年实现利润近12亿美元。我国中科院山西煤化所从20世纪80年代开始进行铁基、钴基两大类催化剂费-托合成油煤炭间接液化技术研究及工程开发,完成了2000吨/年规模的煤基合成油工业实验,5吨煤炭可合成1吨成品油。据项目规划,一个万吨级的“煤变油”装置可望在未来3年内崛起于我国煤炭大省山西。中科院还设想到2008年建成一个百万吨级的煤基合成油大型企业,山西大同、朔州地区几个大煤田之间将建成一个大的煤“炼油厂”。最近,总投资100亿美元的朔州连顺能源公司每年500万吨煤基合成油项目已进入实质性开发阶段,计划2005年建成投产。产品将包括辛烷值不低于90号且不含硫氮的合成汽油及合成柴油等近500种化工延伸产品。我国煤炭资源丰富,为保障国家能源安全,满足国家能源战略对间接液化技术的迫切需要,2001年国家科技部”863”计划和中国科学院联合启动了”煤制油”重大科技项目。两年后,承担这一项目的中科院山西煤化所已取得了一系列重要进展。与我们常见的柴油判若两物的源自煤炭的高品质柴油,清澈透明,几乎无味,柴油中硫、氮等污染物含量极低,十六烷值高达75以上,具有高动力、无污染特点。这种高品质柴油与汽油相比,百公里耗油减少30%,油品中硫含量小于0.5×10-6,比欧Ⅴ标准高10倍,比欧Ⅳ标准高20倍,属优异的环保型清洁燃料。山西煤化所进行”煤变油”的研究已有20年的历史,千吨级中试平台在2002年9月实现了第一次试运转,并合成出第一批粗油品,到2003年底已累计获得了数十吨合成粗油品。2003年底又从粗油品中生产出了无色透明的高品质柴油。目前,山西煤化所中试基地正准备第5次开车,计划运行6个月左右。目前世界上可以通过”煤制油”技术合成高品质柴油的只有南非等少数国家。山西煤化所优质清洁柴油的问世,标志着我国已具备了开发和提供先进成套产业化自主技术的能力,并成为世界上少数几个拥有可将煤变为高清洁柴油全套技术的国家之一。据介绍,该所2005年将在煤矿生产地建一个10万吨/年的示范厂,预计投资12亿~14亿元,在成熟技术保证的前提下,初步形成"煤制油"产业化的雏形。据预测,到2020年,我国油品短缺约在2亿吨左右,除1.2亿吨需进口外,”煤制油”技术可解决6000万~8000万吨以上,投资额在5000亿元左右,年产值3000亿~4000亿元,其中间接液化合成油可生产2000万吨以上,投资约1600亿元,年产值1000亿元左右。从经济效益层面看,建设规模为50万吨/年的”煤制油”生产企业,以原油价不低于25美元的评价标准,内部收益率可达8%~12%,柴油产品的价格可控制在2000元/吨以内。而此规模的项目投资需45亿元左右。目前,包括山西煤化所在内的七家单位已组成联盟体,在进行”煤制油”实验对比中实行数据共享;不久将有1.2吨高清洁柴油运往德国进行场地跑车试验;2005年由奔驰、大众等厂商提供车辆,以高清洁柴油作燃料,进行从上海到北京长距离的行车试验,将全面考察车与油料的匹配关系、燃动性及环保性等。目前”煤制油”工业化示范厂的基础设计工作正在进行之中,预计可在2010年之前投入规模生产。我国与南非于2004年9月28日签署合作谅解备忘录。根据这项备忘录,我国两家大型煤炭企业神华集团有限责任公司和宁夏煤业集团有限责任公司将分别在陕西和宁夏与南非索沃公司合作建设两座煤炭间接液化工厂。两个间接液化工厂的首期建设规模均为年产油品300万吨,总投资分别为300亿元左右。通过引进技术并与国外合资合作,煤炭间接液化项目能够填补国内空白,并对可靠地建设“煤制油”示范项目有重要意义。萨索尔公司是目前世界上唯一拥有煤炭液化工厂的企业。从1955年建成第一个煤炭间接液化工厂至今已有50年的历史,共建设了3个煤炭间接液化厂,年处理煤炭4600万吨,年产各种油品和化工产品760多万吨,解决了南非国内40%的油品需求。中科院与神华集团有关”铁基浆态床合成燃料技术”签约,标志着该技术的产业化指日可待。铁基浆态床合成燃料技术是中科院山西煤化所承担的”十五”中科院创新重大项目和国家”863”计划项目,得到了国家和山西省及有关企业的支持。经过两年多的努力,已经研发出高活性和高稳定性铁系催化剂、千吨级浆态床反应工艺和装置等具有自主知识产权的技术。截至2004年10月已完成了1500小时的中试运转,正在为10万吨/年工业示范装置的基础设计收集数据,已基本形成具有我国自主知识产权的集成性创新成果。与神华集团的合作,将促进对我国煤基间接合成油技术的发展起到积极的作用。壳牌(中国)有限公司、神华集团和宁夏煤业集团于2004年11月签署谅解备忘录,共同开发洁净的煤制油产品。根据谅解备忘录,在为期6到9个月的预可行性研究阶段,三方将就壳牌煤制油(间接液化)技术在中国应用的可行性进行研究,内容包括市场分析、经济指标评估、技术解决方案和相关规定审核以及项目地点的确定。据了解,神华集团和宁夏煤业集团将分别在陕西和宁夏各建设一座煤炭间接液化工厂。计划中的两个间接液化工厂的首期建设规模均为年产油品300万吨,初步估计总投资各为300亿元左右。云南开远解化集团有限公司将利用小龙潭褐煤资源的优势,建设年产30万吨甲醇及10万吨二甲醚项目、年产50万吨或100万吨煤制合成油项目,以及利用褐煤间接液化技术生产汽油。该公司计划于2006年建成甲醇及二甲醚项目,产品主要用于甲醇燃料和二甲醚民用液化气。煤制合成油项目因投资大、技术含量高,解化集团计划分两步实施:2005年建成一套年产1万吨煤制油工业化示范装置;2008年建成年产50万吨或100万吨煤制合成油装置。目前,年产2万吨煤制油工业化示范项目已完成概念性试验和项目可行性研究报告。该项目将投资7952万元,建成后将为企业大型煤合成油和云南省煤制油产业起到示范作用。由煤炭气化制取化学品的新工艺正在美国开发之中,空气产品液相转化公司(空气产品和化学品公司与依士曼化学公司的合伙公司)成功完成了由美国能源部资助2.13亿美元、为期11年的攻关项目,验证了从煤制取甲醇的先进方法,该装置可使煤炭无排放污染的转化成化工产品,生产氢气和其他化学品,同时用于发电。1997年4月起,该液相甲醇工艺(称为LP MEOH)开始在伊士曼公司金斯波特地区由煤生产化学品的联合装置投入工业规模试运,装置开工率为97.5%,验证表明,最大的产品生产能力可超过300吨/天甲醇,比原设计高出10%。它与常规甲醇反应器不同,常规反应器采用固定床粒状催化剂,在气相下操作,而LP MEOH工艺使用浆液鼓泡塔式反应器(SBCR),由空气产品和化学品公司设计。当合成气进入SBCR,它藉催化剂(粉末状催化剂分散在惰性矿物油中)反应生成甲醇,离开反应器的甲醇蒸气冷凝和蒸馏,然后用作生产宽范围产品的原料。LP MEOH工艺处理来自煤炭气化器的合成气,从合成气回收25%~50%热量,无需在上游去除CO2(常规技术需去除CO2)。生成的甲醇浓度大于97%,当使用高含CO2原料时,含水也仅为1%。相对比较,常规气相工艺所需原料中CO和H2应为化学当量比,通常生成甲醇产品含水为4%~20%。当新技术与气化联合循环发电装置相组合,又因无需化学计量比例进料,可节约费用0.04~0.11美元/加仑。由煤炭生产的甲醇产品可直接用于汽车、燃气轮机和柴油发电机作燃料,燃料经济性无损失或损失极少。如果甲醇用作磷酸燃料电池的氢源,则需净化处理。煤炭直接液化技术早在20世纪30年代,第一代煤炭直接液化技术—直接加氢煤液化工艺在德国实现工业化。但当时的煤液化反应条件较为苛刻,反应温度470℃,反应压力70MPa。1973年的世界石油危机,使煤直接液化工艺的研究开发重新得到重视。相继开发了多种第二代煤直接液化工艺,如美国的氢-煤法(H-Coal)、溶剂精炼煤法(SRC-Ⅰ、SRC-Ⅱ)、供氢溶剂法(EDS)等,这些工艺已完成大型中试,技术上具备建厂条件,只是由于经济上建设投资大,煤液化油生产成本高,而尚未工业化。现在几大工业国正在继续研究开发第三代煤直接液化工艺,具有反应条件缓和、油收率高和油价相对较低的特点。目前世界上典型的几种煤直接液化工艺有:德国IGOR公司和美国碳氢化合物研究(HTI)公司的两段催化液化工艺等。我国煤炭科学研究总院北京煤化所自1980年重新开展煤直接液化技术研究,现已建成煤直接液化、油品改质加工实验室。通过对我国上百个煤种进行的煤直接液化试验,筛选出15种适合于液化的煤,液化油收率达50%以上,并对4个煤种进行了煤直接液化的工艺条件研究,开发了煤直接液化催化剂。煤炭科学院与德国RUR和DMT公司也签订了云南先锋煤液化厂可行性研究项目协议,并完成了云南煤液化厂可行性研究报告。拟建的云南先锋煤液化厂年处理(液化)褐煤257万吨,气化制氢(含发电17万KW)用原煤253万吨,合计用原煤510万吨。液化厂建成后,可年产汽油35.34万吨、柴油53.04万吨、液化石油气6.75万吨、合成氨3.90万吨、硫磺2.53万吨、苯0.88万吨。我国首家大型神华煤直接液化油项目可行性研究,进入实地评估阶段。推荐的三个厂址为内蒙古自治区鄂尔多斯市境内的上湾、马家塔、松定霍洛。该神华煤液化项目是2001年3月经国务院批准的可行性研究项目,这一项目是国家对能源结构调整的重要战略措施,是将中国丰富的煤炭能源转变为较紧缺的石油资源的一条新途径。该项目引进美国碳氢技术公司煤液化核心技术,将储量丰富的神华优质煤炭按照国内的常规工艺直接转化为合格的汽油、柴油和石脑油。该项目可消化原煤1500万吨,形成新的产业链,效益比直接卖原煤可提高20倍。其副属品将延伸至硫磺、尿素、聚乙烯、石蜡、煤气等下游产品。这项工程的一大特点是装置规模大型化,包括煤液化、天然气制氢、煤制氢、空分等都是世界上同类装置中最大的。预计年销售额将达到60亿元,税后净利润15.7亿元,11年可收回投资。甘肃煤田地质研究所煤炭转化中心自主研发的配煤液化试验技术取得重大突破。由于配煤液化技术油产率高于单煤液化,据测算,采用该技术制得汽柴油的成本约1500元/吨,经济效益和社会效益显著。此前的煤液化只使用一种煤进行加工,甘肃煤炭转化中心在世界上首次采用配煤的方式,将甘肃大有和天祝两地微量成分有差别的煤炭以6:4配比,设定温度为440℃、时间为60秒进行反应,故称为“配煤液化”。试验证明,该技术可使煤转化率达到95.89%,使油产率提高至69.66%,所使用的普通催化剂用量比单煤液化少,反应条件相对缓和。甘肃省中部地区高硫煤配煤直接液化技术,已由甘肃煤田地质研究所完成实验室研究,并通过专家鉴定,达到了国际先进水平。同时,腾达西北铁合金公司与甘肃煤田地质研究所也签署投资协议,使”煤制油”产业化迈出了实质性一步。为给甘肃省”煤制油”产品升级换代提供资源保障,该省同甘肃煤田地质研究所就该省中部地区高硫煤进行”煤制油”产业化前期研究开发。经专家测定,产油率一般可达到64.63%,如配煤产油率可达69.66%。该项目付诸实施后,将为甘肃省华亭、靖远、窑街等矿区煤炭转化和产业链的延伸积累宝贵的经验。神华集团”煤制油”直接液化工业化装置巳正式于2004年8月底在内蒙古自治区鄂尔多斯市开工。这种把煤直接液化的”煤制油”工业化装置在世界范围内是首次建造。神华煤直接液化项目总建设规模为年产油品500万吨,分二期建设,其中一期工程建设规模为年产油品320万吨,由三条主生产线组成,包括煤液化、煤制氢、溶剂加氢、加氢改质、催化剂制备等14套主要生产装置。一期工程主厂区占地面积186公顷,厂外工程占地177公顷,总投资245亿元,建成投产后,每年用煤量970万吨,可生产各种油品320万吨,其中汽油50万吨,柴油215万吨,液化气31万吨,苯、混合二甲苯等24万吨。为了有效地规避和降低风险,工程采取分步实施的方案,先建设一条生产线,装置运转平稳后,再建设其它生产线。2007年7月建成第一条生产线,2010年左右建成后两条生产线。神华集团有限责任公司2003年煤炭产销量超过1亿吨,成为我国最大的煤炭生产经营企业。据称,如果石油价格高于每桶22美元,煤液化技术将具有竞争力。神华集团将努力发展成为一个以煤炭为基础,以煤、电、油(化)为主要产品的大型能源企业集团。到2010年,神华集团煤炭生产将超过2亿吨;自营和控股发电装机容量将达到2000万千瓦;煤炭液化形成油品及煤化工产品能力达1000万吨/年;甲醇制烯烃的生产能力达到1亿吨/年。2020年,其煤炭生产将超过3亿吨;电厂装机容量达到4000万千瓦;煤炭液化形成油品和煤化工产品能力达3000万吨/年。目前,煤炭直接液化世界上尚无工业化生产装置,神华液化项目建成后,将是世界上第一套煤直接液化的商业化示范装置。煤炭间接液化也仅南非一家企业拥有工业化生产装置。美国正在建设规模为每天生产5000桶油品的煤炭间接液化示范工厂。云南省也将大力发展煤化工产业,并积极实施煤液化项目。云南先锋煤炭直接液化项目预可行性研究报告已于2004年5月通过专家评估。项目实施后,”云南造”汽油、柴油除供应云南本省外,还可打入省外和国际市场,同时也将使云南成为继内蒙古后的第二大”煤变油”省份。云南省先锋煤炭液化项目是我国利用国外基本成熟的煤炭直接液化技术建设的首批项目之一。云南煤炭变油技术将首先在先锋矿区启动,获得成功经验后在其他地方继续推广。即将兴建的云南煤液化厂估算总投资103亿元,项目建设期预计4年,建成后年销售额34亿元,年经营成本7.9亿元,年利润13.8亿元。云南省煤炭资源较为丰富,但是石油、天然气严重缺乏。先锋褐煤是最适合直接液化的煤种。在中国煤科总院试验的全国14种适宜直接液化的煤种中,先锋褐煤的活性最好,惰性组分最低,转化率最高。液化是一个有效利用云南大量褐煤资源的突破口,洁净煤技术是发展的方向,符合国家的产业政策。”煤变油”将使云南省煤炭资源优势一跃成为经济优势。一旦”煤变油”工程能在全省推广,全省150亿吨煤就能转化为30亿吨汽油或柴油,产值将超过10万亿元。

有今年签到潞安新疆伊犁煤化工的吗,联系下,一起啊

能守其本
出外人
“ 不到新疆不知道中国之大,不到伊犁不知道新疆之美”。伊犁河谷素有塞外江南的美称,风景优美,地产丰富,尤其煤炭资源和水资源非常丰富。我公司就坐落在新疆伊犁察布查尔锡伯族自治县,距伊宁市区仅20公里,交通便达。目前投资30亿元新建30万吨/年合成氨、52万吨/年尿素的化肥项目是整个工业园区(煤、电、油、气、化)的起步项目,年产40亿立方米/年天然气项目已经立项,热烈欢迎广大有志青年来我公司工作。一、公司简介潞安新疆伊犁煤化工有限公司是2009年2月16日注册成立的。伊犁公司是潞安新疆煤化工(集团)有限公司(简称“潞新公司”)的全资子公司。公司地处伊犁哈萨克自治州察布查尔锡伯族自治县,距离伊宁市区20公里,交通便利。潞安新疆煤化工(集团)有限公司(简称“潞新公司”)是潞安矿业集团公司控股,由潞安集团公司、自治区人民政府、中国信达资产管理公司、中国华融资产管理公司共同出资组建的股份制公司。2007年9月26日在乌鲁木齐市揭牌,9月28日在公司总部——三道岭矿区举行了隆重的揭牌仪式。潞新公司现有资产总额为28亿元,在职员工8786人,离退休职工4900人。现有生产矿井3座,生产能力475万吨,其中露天煤矿生产能力180万吨,一矿生产能力145万吨,二矿生产能力150万吨,都位于哈密市三道岭矿区。潞新公司的控股母公司-潞安矿业集团公司是于2000年8月由原潞安矿务局改制而成,是一个以煤炭生产经营为基础,电力、煤化工等煤基多元化综合发展的现代化企业集团。现有石圪节、五阳、漳村、王庄、常村、善福、屯留、高河14处矿井,拥有4个全资子公司,24个控股子公司,6个分公司和8个地面辅助生产单位。煤炭年生产规模超过3000万吨,2008年潞安集团煤炭产量达到4000万吨以上,总销售收入达到350亿元以上,实现利润达到32亿元。潞安集团和潞新公司在伊犁地区以潞安新疆伊犁公司为平台,在察布查尔县规划建设伊犁煤化工园区,园区目前主要包括四个项目:一是以山鑫矿为基础建设投资的煤矿项目。该项目在“十一五”时期建设产能将达300万吨/年,“十二五”期末产量达600万吨/年;“十三五”期末产量达1000万吨/年。根据公司投资计划安排,按300万吨矿井的技改扩建规模投资,2009年计划投资12000万元: 完成60万吨/年矿井验收、安全监控系统升级改造、煤炭筛分系统建设、职工公寓建设、矿区公路建设、联合建筑改造等;2010年计划投资10000万元:完成矿井双回路供电系统改造、综合修理车间建设、压风系统改造、主斜井、副斜井提升系统改造等;2011年计划投资8000万元:完成矿井主通风系统改造、主排水系统改造等。二是“十一五”期间在伊犁建成合成氨30万吨/年、尿素52万吨/年的化肥项目,目前已经开工建设。该项目总投资约为30亿元人民币。到目前为止,已完成投资1300万元。根据项目实际情况,2010年投资计划约为15亿元,用于引进专利技术,订购主要设备,目前厂前区三通一平、地基处理、地下管道等地下等工程已开工。三是在察布查尔县规划建设总装机容量为4×300MW的热电厂。分两期建设,一期工程建设2×300MW,二期工程建设2×300MW,到2015年和2020年分期建成。该工程静态投资27.9亿元,目前已经完成投资近800万元。电厂项目计划2009年投资4000万元用于完成全部自治区级手续的办理,并上报国家相关部门,力争2010年取得国家发改委的核准并开工建设。四是依托伊犁当地煤炭及水资源优势,建设年产四十亿立方米/年的煤制天然气项目,该项目可行性研究报告和立项批复已于2009年8月前完成,其经济效益非常可观,目前今年项目的手续办理等前期工作正在进行。

未来煤炭行业的发展前景如何?

彼以利合
屈折礼乐
当前合成氨、尿素等传统煤化工行业产能过剩愈演愈烈,市场竞争不断加剧,煤化工企业必须要进一步掌握新型煤化工及精细化工的最新方向,探索现代煤化工产业高端化的可行路径,才能在未来的市场竞争中占有一席之地。目前,传统煤化工出现了有技术没市场、产能过剩的状况,DMM(聚甲氧基二甲醚)、MTA(甲醇制芳烃)是有市场没技术,而煤制烯烃、煤制油、煤制天然气、煤制乙二醇等新型煤化工既有技术又有市场,发展空间广阔。节能减排、低碳环保是我国的基本国策,发展现代煤化工也要遵循这一国策。面对传统煤化工市场产能过剩、竞争激烈的形势,发展现代煤化工是煤化工企业的必由之路。将结合当前各煤化工下游产品的市场、技术成熟度与工艺可靠性等情况,通盘考虑晋煤煤化工产业未来的发展方向。根据前瞻产业研究院发布的《2015-2020年中国煤炭行业发展前景与投资战略规划分析报告 前瞻》分析:现代煤化工必须坚持绿色、低碳、高新精细化的发展路线,才能提升行业和企业核心竞争力,实现可持续发展。无论是传统煤化工还是现代煤化工,都必须符合国家煤化工产业绿色发展的要求,必须加大综合治理力度,减少污染物排放;调整优化产业结构,推动产业转型升级;加快企业技术改造,提高科技创新能力;严格节能环保准入,优化产业空间布局,真正实现煤化工产业全面的绿色可持续发展。

减少碳污染的治理方案

夺魄
处矣
彻底解决碳排放的思路和方法摘要:随着现代工业产业逐步形成,人类也养成一些习惯行为和做法。比如烧锅炉排烟、汽车尾气排放,好像是必然发生和天经地义的行为。今天,是时候通过理念的更新,打破惯性思维的牢笼,让我们的工业生产过程来一次变革,从根本上解决碳排放及其他污染气体排放问题,让污染物质资源化,同时实现热量、能量的充分利用,达到减排、节能、增效的综合目的。 一、 碳排放现状和危害自工业革命以来,人类活动大量排放的二氧化碳使全球出现变暖趋势,北极冰雪也加速融化,引起极端性气候灾害频发,严重危害人类生存和发展。对于全球变暖,科学家已经基本达成共识:最近50年来气温的上升主要是由于二氧化碳等温室气体增加造成的。因为二氧化碳是一种可长期存留的温室气体,它的排放量最终必须降到接近零的水平,中国目前是世界最大的碳排放国。随着经济的发展,今后仍将持续增加。尽管中国的碳排放总量仍在增长,但排放增速自2005年以来已“稳步下降”了大约30%,2014年增速甚至放缓至接近于零,并且中国的发电厂平均能源使用效率也处在世界领先水平。中国承诺其二氧化碳排放量将在2030年左右达到峰值,有推算认为最高将达到150亿吨。作为全球最大的二氧化碳排放国,为达成这一目标中国将投入超过41万亿元人民币。二、 碳排放来源及控制人类活动造成的碳排放是温室气体剧增的主要因素!人类碳排放主要来自于化石燃料的使用以及其他工业生产。煤炭、天然气、石油、水泥在1960~2012年间的累计排放量占总排放量的比例依次为39.2%、17.2%、40.5%、3.1%。2012年的比例依次为42.8%、19.0%、33.0%、5.2%。近十多年来,由于煤炭使用量快速增长,来自于煤炭的排放也快速增长。从上述数据可以看出,化石燃料能源生产和利用的排放占温室气体排放2/3,减少碳排放的根本出路是减少石化燃料消耗!而能源又是经济增长基础。既要确保世界经济增长和能源安全,解决70多亿人的衣食住行,又要顾及各国不同国情逐步减少对化石燃料的依赖。所有的发展中国家目前也都面临两难境地,既要发展经济,又要应对、减缓气候变化。在现有技术条件下,如果减少碳排放,就意味着它们要承担经济放缓甚至停滞的巨大成本。这无论从现实和道义上都讲不通。对于中国特别不是一件容易的事情。即使采取较积极的能源政策,包括提高可再生能源和油气等清洁能源的比例,到了2020年我国煤炭消费仍占约60%。三、 碳排放吸收固定地球空气中含有约不到0.03%的二氧化碳,而且在过去很长一段时期中,含量基本上保持恒定。在自然生态系统中,陆地植物和海洋生物通过光合作用从大气、水中摄取并固定碳的速率,与自然环境生物、火山、温泉等排放源释放到大气中的速率基本是相同的, 二氧化碳始终处于“边增长、边消耗” 的动态平衡状态。大气中的二氧化碳有80%来自人和动、植物的呼吸,20%来自燃料的燃烧。散布在大气中的二氧化碳有75%被海洋、湖泊、河流等地面的水及空中降水吸收溶解于水中。还有5%的二氧化碳通过植物光合作用,转化为有机物质贮藏起来。而现在,随着工业的迅速的发展,使积存在地层中千百万年的碳元素,在很短时间内释放出来,而破坏了原有的碳循环的平衡,积累的二氧化碳估计需要50~100年才能自然消耗、固定。对于空气中微量的二氧化碳等温室气体,除了依赖环境自然消耗以外,人类目前没有更好的办法。我们所能做的,就是设法增加、强化海洋、陆地吸收、固定、储存碳的能力。四、 减排理论创新除了保护海洋环境,保护陆地植被来帮助环境增加吸收二氧化碳的能力以外,人类能做的主要在于减少碳排放。目前,减少碳排放主要有以下几种技术方向和选择。1、 采取清洁能源首先一个方法就是使用含碳量低的清洁化石能源。但是采用天然气、页岩气等替代煤炭,同样存在很多问题,首先还是使用化石能源,存在枯竭的问题;其次含碳比例虽然下降,但仍有一半的排放;再次,有专家认为,这类石化燃料排放的水蒸气,是城市雾霾的成因之一,因为有雾才有霾的物理条件,局部空气含水量增加,容易随着气候变化快速形成污染物的“气溶胶”,这就是霾!再有就是发展非化石能源,如核能、水电、风电、太阳能。但是就电力供应总量而言,可再生能源所占的比例仍很小。全球来看,新型可再生能源,也就是风能和太阳能,在全球主要能源供应量中所占的比重仍不足5%。1990年,化石燃料在全球电力供应中所占的比重为88%,2012年这个比例是87%。学术界也对于风能造成环境生态变化、草原沙化,太阳能光伏在产业链过程的污染、效率问题提出很多疑问,这些能源供应方式到底是不是人类的最终出路,还没有得出定论。使用低碳能源和可再生能源显然是出路,但一国的能源结构涉及的因素太多,并非一朝一夕所能解决。2、 提高能源的利用率现在全社会倡导节能减排,呼吁每个人通过改变用能习惯,实现低碳生活,参与到拯救环境、拯救人类自己的行动中来。但是个人的能力有限,并且少数发达国家的人均耗能长期居高不下,从某种角度来讲,这条路显然不是好的出路!传统的能源利用观念是习惯于消耗能源来满足能源需求,节能减排手段也习惯于追求能源消耗过程中尽可能百分之百的利用。这样的思路和方法已经无法实现高耗能环节的大比例节能降耗。社会能耗水平随着经济社会的发展只能不断增加。人们熟知的能量守恒定律,让我们许多人忽略了使用一种叫“热泵”技术的热能搬运 “杠杆”作用。即消耗一份能量,带动其它介质中已有热量的再利用,目标得到同样热能,但新消耗的高品位能源、石化燃料大大减少,通过能量的流动,替代能量简单消耗,实现大幅度节能减排。热泵技术有很多种,空调、制冷系统采用的是一种压缩式热泵系统,空调可以高效率地将室内外的热量来回搬运,能效比普遍在3倍以上,换句话说,比直接消耗能源物质获得热量的方法,节约能源三分之二以上!而人们使用空调、冰箱已超百年,这些年逐步推广开的水源热泵、地源热泵,也都是该原理的典型应用。热泵有太多种类,驱动热泵工作的能量来源也包括电能、热能、势能等。现有的热泵系统输出可以很容易地达到100℃以上,介入“水-汽”沸腾高耗能环节,并且长时间高效率运行,如果我们的锅炉能从现在努力追求100%的效率,变成起步就是200%~300%的效率或更高,节能50%以上,从原来需要热量就消耗能源物质转换获得,变为从其他环节高效率回收、搬运获得,系统新增的能量消耗、环境热排放仅是原有直接能耗模式的几分之一、几十分之一,大大提高了能源的利用效率。事实上要想实现人类能源资源的成倍增加几乎不可能,采用技术创新将社会能耗降低三分之一、三分之二甚至则完全可能!只要设法“让能量动起来”,能量守恒定律就能保证人类有了用不完的能源,地球也就没有日益变暖的危险了。3、 发展能源利用基础理论现在理论界都在研究新的理论、新的能源,对于传统能源和能源应用基础理论则没有人反思和研究。目前中国电力能源的约70%靠火电提供,但是火力发电的工作原理还是基于100多年前诞生的郎肯循环,几乎没有发展!汽车、飞机还用的是“卡诺循环”,也没有突破进展。即便到了今天,郎肯循环仍产生世界上90%的电力,包括几乎所有的太阳能热能、生物质能、煤炭与核能的电站。从哲学意义上讲,郎肯循环诞生的年代有必然的历史局限性,那个时代研究热力学的机械条件、流体力学理论和现在差距很大,难免存在一些理论限制和认识不足。即便是能量守恒定律都已经发展到了质能守恒,且还在发展,“卡诺循环”、“郎肯循环”就无懈可击、十全十美了?其实人类一百多年的技术进步已经有理由对郎肯循环进行发展、创新。射流技术能实现利用非机械动力的方式实现对完成做功后的乏蒸汽进行再利用,可压缩流体热力学理论也能让我们设法直接回收再利用未能直接利用的乏汽凝结释放的冷凝热,让未能通过汽轮机一次转化为功的热量有机会参与下一次做功循环,经过多次转化做功,在理论上实现蒸汽动力循环整体热效率的大幅度提高。我们提出了一种“新的蒸汽动力循环”设法实现“能量动起来”,也对卡诺循环进行再认识和应用创新,提出“热机冷下来”。希望藉此带来理论界的新的探索,改变能源应用主要模式,提高热机的效率,实现各行业大幅度的节能、减排、增效。4、 碳捕获并资源化利用l 碳捕集二氧化碳利用的前提是如何持续稳定地获取二氧化碳资源,而这方面的技术已经基本成熟。对于大量分散型的CO2排放源是难于实现碳的收集,因此碳捕获的主要目标是像化石燃料电厂、钢铁厂、水泥厂、炼油厂、合成氨厂等CO2的集中排放源。首先有一种方法通过“富氧燃烧”提高排放废气中二氧化碳的浓度,便于高效率回收,采用直接冷却、压缩就可以实现碳捕捉。针对二氧化碳含量不同的各种废气,也已经形成了相应的回收方法,包括低温蒸馏法、膜分离法、催化燃烧法和变压吸附法等。本文将提出一种简单、高效、环保、低成本,可以适用各种浓度、不同成分的含二氧化碳废气的冷凝回收方法,还可以同时分类回收其他温室气体和有害气体。l 碳埋存近年来人们尝试把集中收集到的二氧化碳浓缩液化、固化后深埋地下、深海。但从长远来说,这只是一个“鸵鸟政策”,并且能处理的碳和自然界消化、固定的碳相比,微乎其微,也留下严重生态危机隐患。还有一种利用金属和金属化合物与二氧化碳再反应生成金属固化物封存的办法,反应过程还能释放热量,是一种另类的燃烧过程,通常需要在2000℃以上或更高的温度下实现,但产生其他更复杂污染物的情况将更加严重,目前行业技术进展不大。l 碳利用二氧化碳可以用于食品、化工、消防、农业、石油、人工降雨等诸多领域。从每吨600~800元的价格,就能反映出他的价值。二氧化碳作为化学品原料加以利用已初具规模。尿素是固定二氧化碳的最大宗产品,其次是无机碳酸盐,还有利用二氧化碳制碱、制糖、合成可降解塑料等。虽然二氧化碳是非常优秀的灭火剂,但是实际使用还不够普及,特别当它用于大范围常规火灾(如森林火灾)或一般性危化品火灾(天津滨海新区危化品火灾)时,有非常好的灭火效果。今后应进一步推广应用,同时也实现了大量的碳存储。二氧化碳是绿色植物光合作用不可缺少的原料,一定范围内,二氧化碳的浓度越高,植物的光合作用也越强,因此二氧化碳是最好的气肥。有实验证明二氧化碳在农作物的生长旺盛期和成熟期使用,效果显著。在这两个时期中,如果每周喷射两次二氧化碳气体,喷上4~5次后,蔬菜可增产90%,水稻增产70%,大豆增产60%,高粱甚至可以增产200%。我们可以利用这种方式,给森林“施肥”,主动促进植被的生长,大幅度增加环境绿色植物吸收二氧化碳的能力。收集到的二氧化碳不是低温就是高压存储,根据我们的“热机冷下来”理论,固态、液态二氧化碳还可以吸收环境或其它介质里免费的热量,气化膨胀为高压气体,用于推动机械工作。实验室里已经将现有内燃机稍加改动,就可以成为一个“气动机”,使用高压二氧化碳气体作为动力源。有实验证明,使用液态二氧化碳作为“动力”,携带介质体积比汽油大5~8倍,但综合成本是汽油的二分之一或相近,有推广应用的商业价值。想象一下不久的将来,一个远洋货轮,携带大量液态二氧化碳作为媒介,吸收海水的热量膨胀为高压二氧化碳气体,成为轮船的动力来源,最后排放到大海里,增加海洋吸碳量,减少兴波阻力,一举数得!一辆经过改装的长途汽车、火车头,携带液态二氧化碳,当途径一个山路、草原的时候,启动气动模式,二氧化碳吸收环境空气的热量变成高压二氧化碳气体,继续推动车辆前进,排出的二氧化碳尾气成为山间、草原绿色植物的“气肥”。五、 冷凝回收碳排放现有的气体冷凝收集虽然是一种常用的手段,但是采用极低的温度来对沸点很低的废气、污染气体进行吸收的具体应用还不多。我们提出一个利用超低温冷源,对成分复杂的工业尾气、废气进行分级冷却、冷凝处理,将尾气中所含的温室气体液化,初步分离、分类存放,可以变废为宝,进一步集中处理,实现尾气零排放。同时可以将尾气所含的显热、潜热部分转换为电能、机械能的解决方案。1、 利用液态空气冷源液态空气是把空气制冷降温到空气的沸点以下,空气从常温的气态变为接近-200℃的液态。利用这样的液体作为冷源,通过一个装置,对废气进行制冷,最后沸点较高的二氧化碳等气体液化、固化,低沸点的液态空气吸热气化后排放,通过液体置换,实现了废气中污染气体、温室气体的收集。系统 示意图如下:废气从废气入口进入风冷蒸发器进一步降温,再进入回热换热器(如板翅换热器或套管式换热器)利用处理后的冷气逐步降温,进一步到换热器进一步降温;到低温冷凝器达到最低温度,废气中二氧化碳冷凝,处理后干净的气体再回到回热换热器,利用排气低温对新进入的废气预冷,冷量充分利用,最后回升到接近进气温度后再排放;液态空气被低温泵送入低温冷凝器作为冷源,同时吸热气化成为高压气体,再经换热器进一步换热升温后,进入膨胀机做功带动发电机发电;膨胀机排出的气体也进入回热换热器对进气预冷。废气中的水蒸气冷凝后再次喷淋到风冷蒸发器蒸发,提高冷量的利用率。这样的系统,设备成本约每吨位15000元;用1Kg、-191℃、汽化热约37、气体比热0.25的液态空气,经过膨胀机做功发电后再次吸热,大约可以置换 -78℃、汽化热137的二氧化碳0.6Kg,同时可以发电0.15KwH。1吨液态空气批发价150元,回收的0.6吨二氧化碳按批发价650元计算价值390元,还能发电150KwH价值75元,毛利润约315元;还能回收少量浓硫酸盐、硝酸盐溶液。2、 利用热泵冷源以现有的二级制冷压缩式热泵系统,很容易实现-80℃ 的输出,利用这样的冷源,通过一个装置,对废气进行制冷,将废气中的二氧化碳等气体液化、固化,实现了废气中沸点低于冷源温度的污染气体、温室气体的收集。系统示意图如下:废气从废气入口进入回热换热器(如板翅换热器或套管式换热器)利用处理后的冷气逐步降温,到低温冷凝器达到最低温度,废气中二氧化碳冷凝,处理后干净的气体再回到回热换热器,利用排气低温对新进入的废气预冷,冷量充分利用,最后回升到接近进气温度后再排放;冷凝热被热泵转移到储水罐的热水中备用。这样的系统,设备成本约3000元/KwH;用1KwH的电能,成本0.5元,制冷效率0.85(理论值是2),能输出大约可以输出“冷量”714Kcal,约回收-78℃、汽化热137、气体比热0.25的二氧化碳4.4Kg,按批发价650元/吨计算价值2.86元。同时还能输出120℃的水蒸气2Kg,或者温升50℃的热水31Kg,按每吨热水25元计算,价值0.7元,毛利润约3元。根据中欧煤炭利用近零排放合作项目在2009年年底作出的报告,二氧化碳的捕集成本为18欧元/吨, 捕集和封存二氧化碳的综合成本为25-30欧元/吨。本文提出的方案和已有数据接近甚至更低,综合效果也更好。从上述两种方式分析,均具有较好的经济性,设备成本不高,通用性强,投资回收期短,社会推广的价值很大,企业的积极性会很高!六、 实施阶段展望在推广应用上述碳收集资源化方案的步骤,应该首先从碳排放比较集中的环节下手。例如各种锅炉、窑炉、大型内燃机等。例如从采暖锅炉、工业生产蒸汽锅炉、发电厂的燃煤锅炉排烟口、烟囱,获取本来要排放的烟气,将其中的污染气体、温室气体回收。热泵冷源系统采用的设备,都是工业领域里成熟的系统,制冷冷源从数千瓦到数千千瓦都可以生产,换热系统、冷凝器也都是成熟产品,低温储罐早都有国家标准,很快可以实现规模化生产。这样的系统安装试用过程中,对原有的生产系统不需要改造,具有很好的可行性、安全性,易于工程化,系统安装调试、投入使用过程可以逐阶段实施,实现平稳过渡。后续使用过程中也可以灵活启动、停止。由于具有良好的经济性,企业的改造、使用的积极性会很容易调动起来,市场化操作非常容易整合各方的产能、资金、资源。液态空气冷源方法具有系统简单,可以输出辅助电力、动力等特点,适用于机动车尾气回收。可以由政府带头示范,在城市公交、环保环卫车辆上优先试用,逐步向重点运输单位、物流等企业推广,让他们在减排的同时,也能从节约燃料、销售回收的资源等多方面获得更好的经济效益。针对有条件利用二氧化碳作为动力介质,将二氧化碳带到海洋、森林、草原等环境释放的企业,可以进一步给予奖励、补偿,实现国家、企业、环境多方受益的目的。七、 结束语一位生物学家在玻璃杯里放了一只跳蚤,这个可跳到自己身体400倍高度的“跳高冠军”,毫不客气就跳了出来。后来,试验者在玻璃杯口上放了一个玻璃盖,这只不知情的跳蚤便连续不断地撞在玻璃盖上。不断地撞击之后,这只跳蚤适应了这个高度,再也没有一次撞到玻璃盖。这时,试验者取走了玻璃盖。却发现,这只跳蚤再也跳不出杯子了。一周过去,情形依旧。这只跳蚤只会把自己的跳跃保持到这个高度了。怕撞头,不敢再跳?已经习惯,懒得再跳?还是已经默认这只杯子,就是自己无法逾越的高度?看来,它是被自己通过亲身实践而总结的成功经验束缚住了。今天,我们人类不能当那个跳蚤,需要打破惯性思维,对已经习惯了、想当然的、传统的工业生产过程重新梳理,利用技术进步的成果进行基本理论、工艺过程的再认识,实现创新发展,再来一次能充分发挥自己能力的“飞跃”!我们需要通过能量、动力、排放的变革,彻底解决能源、资源高效利用和环境污染问题。 参考文献:【1】李芬芬等,电厂烟气中二氧化碳的捕获,化学工程与技术 2011,1,4-10【2】田超,二氧化碳的利用前景,大氮肥,2002,第25卷第3期【3】刘文宗,二氧化碳的资源化利用,科学发展 2007,5,413期【4】沈国良,二氧化碳在化工中的利用,二氧化碳减排控制技术与资源化利用研讨会,2008年9月【5】梁国仑,国外二氧化碳的应用及市场概况,低温与特气,1997,1期【6】陈健等,全球碳排放市场现状及对我国的启示分析,中国环境科学学会学术年会论文集,2014,700页【7】周伟等,中国碳排放:国际比较与减排战略,资源科学,2010年8月第32卷【8】朱维群,零碳排放的煤炭清洁利用技术开发,第六届能源科学家论坛,大连,2015.8

浸入式水泵是怎么解决内泄漏问题的?

节葬
雨音
国内外水泵产品选登ITT工业集团——流体技术公司 该公司是一家提供流体系统与方案的全球性公司。公司业务涉及各种泵、搅拌器、风机、监控设备、热交换器、阀及工业、住宅、农业、商业、市政系统的设计、开发、生产、销售和售后支持等领域。流体技术公司服务的主要市场包括水与污水处理、建筑业、工业以及生物/制药业。 ITT流体技术公司“水循环”产品与系统作为流体处理设备以及给水、水处理与污水回收利用相关产品的世界主要生产厂家,其中泵类的生产企业有:A-C泵业公司(A-C Pump)提供各种公用事业及一般工业给水、分配、处理、防洪、加工用泵送设备;Flowtronex公司设计与制造各种组合式泵送系统,适用于高尔夫球场、风景区与市政项目的灌溉、增压与扬水应用;飞力公司(Flygt)是世界主要的潜水泵、搅拌机与曝气设备制造商,产品适用于水与废水处理、未净化水供给、磨蚀或污染性生产过程、采矿与农作物灌溉等;高质泵泵业集团生产工业用泵与附件,产品适用于化工、造纸与纸浆、发电、炼油、天然气加工、采矿与矿物加工及一般工业等;古尔兹泵业是全球水处理技术市场的领导者,生产世界最好的住宅用水井泵,古尔兹泵业的产品包括住宅、农业与灌溉、污水与排水、商业与轻工业用潜水与动力轴涡轮、4英寸潜水泵、喷射泵、水槽泵、污水泵、废水泵与离心泵;罗瓦拉公司(Lowara)是世界不锈钢泵制造技术的领导者,产品包括:潜水泵、水槽泵、污水泵、废水泵、离心泵与增压泵套件等,可满足世界各地的住宅、灌溉、建筑物维护与商业市场的供水与水泵需要;泵业公司(Madow Pumps)生产各种戏水池用水泵与部件、全套商业性游泳池与水上乐园用泵产品以及全套污水泵与附件。 ■源水取水 装有滑动底座的成套增压水泵站(ITT品牌:Flowtmnex, Lowara, Vogel)。 大型潜水推进器与混流泵(ITT品牌:飞力)。 干装泵送装置,包括大型端吸泵、化工进给泵、立式涡轮泵与单级双吸泵(ITT品牌:高质泵Goulds Pumps)。 各种离心泵、铸铁离心泵和潜水泵系统与附件以及深井泵与动力轴涡轮(ITT品牌:古尔兹,Lowara, Red Jacket Water Procts, Vogel)。 不锈钢离心泵和潜水泵系统与附件(Lowara)。 ■海水淡化 端吸离心泵、水平分裂箱、海水淡化用多级立式泵与多级增压泵(ITT品牌:高质泵)。 ■劣质水源 型号齐全的过滤用泵,包括:轴流泵、立式潜水泵、立式涡轮泵、单级泵、双吸泵、化工泵、固料输送泵、自动加注泵与多级增压泵等(ITT品牌:高质泵)。 各种离心泵、铸铁离心泵和潜水泵系统与附件以及不锈钢与铸铁潜水动力轴涡轮泵。还可提供变速传动装置与完整的泵站。一般用于干线系统压力不足以为边远客户或高层建筑供水的场合(ITT品牌:古尔兹,Lowara, Red Jacket Water Procts)。 ■防洪 可适应大容量、宽扬程要求的混流与轴流泵、沉淀池排水泵和潜水螺旋泵(ITT品牌:A-C Pump,飞力)。天津甘泉集团公司 长期以来,甘泉集团公司与天津大学有着密切合作,共同承担国家和地方重点科研攻关任务,同时与天津大学地热中心联合成立甘泉集团研究设计院。研究设计院是集地热综合研究及利用、地热工程、给排水工程、水处理工程设计、水工业设备过程控制设计、开发和技术咨询于一体的研究设计机构。可提供地热技术咨询、可行性研究、地热工程设计、供水工程、水质处理、老水厂改造、单井及群井远距离供水计算机全自动监测控制工艺设计、成套设备设计、给排水非标准设备的设计及产品开发等多项服务。已完成120余项地热及供水工程的设计工作。主要产品有: ■漂浮式轴(混)流潜水电泵 适用于可移动的中、小型泵站,特别适用于应急排水,无须水工建筑,工程费用也可比其他方式降低60%以上。适应于自来水源头取水:特别是有利于需要取湖心、江心的无污染水作为自来水水源的场所。可按目前已有的潜水电泵系列,应用中、低扬程及不同流量范围的相应漂浮式电泵系列,以满足不同场合的使用要求。为水利及其他大型工程施工排水泵。 ■QZB系列潜水轴流泵 适用于抽送清水或轻度污水,主要用于江河湖水的防洪排涝、农田灌溉、供水工程等方面。流量:500-20000m3/h,扬程:1.5-12m,功率:22-400kW,口径:350-1400mm。 ■QWB、QHB系列污水潜水电泵 适用于排送带固体和各种纤维物质的液体淤泥、污水废水,主要用于城市污水处理、江河湖污水治理、工矿企业废水排放等方面。流量:5-10000m3/h,扬程:6-80m,功率:1.5-315kW,口径:50-800mm。上海凯士比泵有限公司 该公司有着悠久的大型混流泵、轴流泵制造历史,根据用户的不同需求,形成了泵结构形式齐全、品种规格覆盖面广、泵导轴承系统优点独特、先进的动态调节机构等。在南水北调工程中,该公司为江苏省江都水利枢纽工程四个泵站提供了31台大型轴流泵,其中江都四站安装7台轮直径3.1m、配用功率3000kW、叶片液压动态全调节轴流泵。为了加速南水北调工程的进程,又为江苏省皂河泵站提供了国内及世界上最大的混流泵,泵的叶轮直径为6m,单机流量为100m3/s,单机扬程为7m,泵的转速为175r/min,泵配用功率为7000kW,泵叶片为液压可调,泵在运行时可通过液压使叶片按工况需要进行调节。 PNT/PNH直联式潜水轴流泵,可输送不含缠绕物质的合流污水和清水,用于排灌、污水处理、防洪和一般水源供应。 Amacan P可用于水利灌溉和排水泵站、雨水泵站、水厂和污水泵站中原水和清水的输送,电站和工业冷却水的输送,工业供水、防洪、水产养殖。 Amacan S直联式潜水混流泵,可输送不含缠绕物质的合流污水和清水,用于排灌、污水处理、防洪和一般水源供应。 PHZ可调叶片抽芯式立式混流泵,用于电厂输送循环冷却水和泵站的排灌,以及城市给排水。 Amamix/Amaprop污水处理搅拌器,用于环保工程中处理城市和工业污水、废水、污泥水。Amamix适用于混合、均匀和稠化。Amaprop应用于循环、悬浮和分散。 Amare KRT用于输送城市和工业污水的直联潜水泵,有固定式和移动式两种设计,叶轮有单叶片、自由涡流和无堵塞三种形式。 LCC用特殊耐磨材料制成的涡壳泵,输送含固体颗粒和高度磨损物质的液体。 MF型、MN型立式和卧式污水泵,可输送城市污水和工业污水。用于污泥泵站和污水处理厂,最大出水口径可达1600mm。格兰富水泵(苏州)有限公司 是一家全球性的水泵制造商,目前拥有58家子公司,遍及全球38个国家,1999年总产值达11亿美元。公司于1995年12月正式在苏州工业园区注册。 主要产品有:UPSl00系列循环泵、NK/NB系列单级端吸泵、Hydro系列变频稳压供水系统、SPK/CHK系列浸入式离心泵、SP/SPA系列深井潜水泵、UPA系列小型家用增压泵、CRE/CRNE系列立式多级变频泵、CR/CRN/CRI系列多级离心泵、TP系列立式管道泵、MMS潜人马达。Hydr02000系列是格兰富专业制造的恒压供水系统,显著特点是高效优化,功能先进完备,尺寸紧凑,节能环保,并且达到较高的舒适程度。广泛用于生活供水,工业增压液体运输和灌溉场合等领域。格兰富水泵都是有所针对而设计,只要陈述您的情况,确保能给您一个综合效率高、成本低,可靠性高的解决方案。无锡市锡泵制造有限公司 该公司是全国大型水泵制造公司,主要生产适用于城市给排水、农田排灌、水利工程、电厂水循环和大型调水引水工程所需的大中型水泵,同时生产适用于电厂、矿山、冶金和化工等行业使用的工业泵。是全国水泵行业第一家通过IS09001质量体系认证的企业,同时公司还获得了中国商检局颁发的商品出口许可证。 公司的产品共有九大系列,31个品种,990个规格。安装在江苏省泰州引江河的9台直径为3m的立式开敞式双向轴流泵是该工程的重要设备,泰州引江河水资源调度工程总投资12亿元,是国庆50周年的献礼工程。2003年又一举中得南水北调东线一期工程第一标——宝应站项目,以2099万元的价格获得了建厂以来最大的单项销售订单。该公司产品介绍: ■混流泵 立式混流泵(蜗壳式)、蜗壳式混流泵、蜗壳式混流泵(后开门)、导叶式混流泵、电厂循环泵、导叶式混流泵(单基础)。 ■轴流泵 立式半调节轴流泵、立式全调节轴流泵、斜式半调节轴流泵、贯流泵、卧式半调节轴流泵、卧式全调节轴流泵、单基础轴流泵。 ■潜水泵 轴流式潜水泵、导叶混流式潜水泵、混流泵、潜水污水泵。 ■渣浆泵 渣浆泵、单壳体渣浆泵、液下式渣浆泵、冲灰泵。 ■单级离心泵 单级单吸离心泵、单级双吸离心泵。 ■多级离心泵 低压锅炉给水泵、次高压锅炉给水泵、高楼给水泵、中压锅炉给水泵。 ■真空泵 水环式真空泵。 ■自吸泵 ■污水泵 卧式无堵塞污水泵、立式无堵塞污水泵。湘电长沙水泵厂有限公司 经过50年的艰苦创业,已发展成为全国泵行业的重点骨干企业,并分别于1997年12月和2001年3月通过了第一次和第二次IS09001质量体系认证。 TKX、LKX、LBX型立式斜流泵,一般适用于大型火电站和核电站的循环泵,也可用作工矿、城市和农田给排水工程,用来输送55℃以下的清水、雨水、污水以及海水。流量200-90000m3/s,扬程3-60m。 YJ、YJG型沅江泵系单级单吸涡壳式离心清水泵,适用于大型火力发电厂、工矿、城市和农田建设的给排水工程。用来输送不含固体颗粒的清水或物理、化学性质类似于清水的其他液体。流量5760-21060m3/s,扬程13-64m。 SA型单级双吸中开式离心泵供输送清水或物理、化学性质类似于水的纯净液体之用,可作为工厂、城市、矿山、电站、水利工程等的给排水用泵。流量90-6300m3/h,扬程9.5-104m。 ZLB立式、ZXB斜式、ZWB卧式轴流泵适用于抽送清水、污水(废水)及带有轻微腐蚀性的液体,可供农田排灌、盐厂、养殖、供水、排水、污水处理、电厂输送循环水、船坞升降水位或其他水利工程之用,亦可用于冶金、化工等行业。流量650-180000m3/h,扬程1-13m。 XJ(湘江)、XY(湘英)型泵为卧式单级双吸水平中开式离心清水泵。适用于大型火电厂、工矿、城市和农田给排水工程。用来输送不含固体颗粒(磨料)的清水或物理、化学性质类似于水的其他液体。流量9000-24480mVs,扬程12-64m。 贯流泵系公司自行开发设计的新产品,适用于城市、农田、给排水工程。流量200-90000m3/h,扬程3-60m。 SAP型系单级、双吸水平中开式离心泵适用于输送不含固体颗粒的清水或物理、化学性质类似于水的其他液体,适用于工厂、城市、矿山、电站、农田、水利工程等领域的给排水。流量72-10500m3/h,扬程6.8-115m。 QH、QZ型潜水混流轴流泵是传统的水泵一电动机组的更新换代产品,适用于低扬程、大流量的场合。流量650-36000m3/h,扬程1-13.4m。 QW型潜水排污泵具有高效率、防缠绕、无堵塞、自动藕合、高可靠性和自动控制等优点,能有效地输送含有固态物体和长纤维组成的固液混合物。适合用作工矿企业、住宅区、医院、宾馆等行业的污水、废水排放工程;市政工程、建筑工地的雨水、污水排放工程;城市污水综合处理工程;也可以作为农田排灌,矿山坑内排水,火电厂污水处理以及自来水工程。流量15-15000m3/h,扬程5-60m。沈阳水泵股份有限公司 至今已有70年的悠久历史,现已发展成为我国泵类产品最大的专业制造厂、我国水泵行业技术龙头企业、国家重大技术装备国产化基地企业、中国机械行业500强企业。 1996年以来,企业先后获取IS09001质量体系认证和GJB/Z9001国家军用标准质量体系认证。2002年为国家重点项目广东省东江——深圳供水改造工程提供2600HTEXJ大型叶片可调立式斜流泵,填补了国内空白。 改革开放以来,公司先后从德、日、美、英等国引进七大系列产品设计、制造技术。企业的技术和工艺装备能力、产品制造和控制系统达到了国际先进水平。 可为200-1000MW级火电机组、300-1000MW级核电机组、800万t/a炼油、50万t/a合成氨、80万t/a尿素、66万t/a乙烯、2000万t/a输油管线、100万t/d污水处理厂等装置提供成套泵类产品。主要产品有: H型立式斜流泵;DG、ZDG型高压锅炉给水泵;DG型次高压锅炉给水泵;DG、CHTA、CHTC、CHTZ型高压锅炉给水泵;QG、YNKN型前置泵;LDTN、LDTNA型凝结水泵;NS型凝结水升压泵;LUV型强制循环泵;OH46、0Y55、YOCO422液力偶合器。高邮水泵厂有限公司 公司设有水力机械研究所和水泵测试中心,具有研制生产较高水平的成套水力机械和其它机械的能力。在中小型轴流泵产品系列化的基础上,公司多年来致力于大型水力机械的研制开发,先后为全国21个地区提供了200多台套大型水泵、水轮机。产品采用先进的水力模型,产品性能和各项指标均属国内先进水平。大型泵叶片仿型加工工艺为国内领先。大中型轴流泵叶片角度调节机于1993年获国家专利。 主要产品有: 大中小口径的ZLB、ZLQ、ZXB、ZXQ、ZWB、ZWQ型系列轴流泵,大型轴流泵结钩型式有立式、贯流式,叶轮直径范围为1.0-3.75m;立式单基础长轴泵;HLQ和HLB型系列混流泵;QZ型系列潜水轴流泵;QH型系列潜水混流泵;QW型系列潜水排污泵;WL型系列立式排污泵;D和S型系列离心泵;XD型系列不锈钢多级泵;LG、DL型系列高楼给水泵;低水头,大流量,单机出率至4000KW的轴流、贯流式水轮机;J44型系列拉伸压力机;LWL型系列螺旋卸料离心机。山东博泵科技股份有限公司 该公司是以原国有大型企业博山水泵厂改制组建的股份有限公司。公司始建于1929年,具有50多年专业生产水泵的历史,是国家重点高新技术企业、泵行业重点骨干企业。1997年通过IS09001质量体系认证。 公司现拥有离心清水泵、化工泵、耐腐蚀泵、石油化工流程泵、杂质泵、混流泵、真空泵、煤水泵、空调泵、管道泵、高速高压泵、自动给水成套设备等46个系列280个品种3000余种规格的泵类产品,以及各种规格的不锈钢球阀、管件。船用五金仪器、仪表、体育器械和机械设备等不锈钢精密铸造件。其中适用水利的有: ZLB轴流式水泵,具有流量大、扬程低等特点,可输送温度不超过50℃的清水及物理化学性质类似水的其他液体。中小型轴流泵广泛用于农田排灌、城市给排水、热电站输送循环水、船坞升降水位、水产养殖、盐场汲送池水及其他水利工程。大型轴流泵主要用于大面积农田排灌、跨流域调水和低洼地区、湖区大面积排水。 SV立式单级泵供输送清水及物理化学性质类似于水的液体之用,主要用于需求量大的城市供水、农田灌溉及船坞排水之用。 QW潜水排污泵主要适用于高层建筑、工矿企业、市政工程等污水处理系统。 ISG单级管道泵适用于工业和城市给排水,高楼建筑水塔增压供水,消防增压,管道增压,远距离送水,采暖制冷循环等场合。该系列泵具有运行平稳、可靠、噪音低、使用范围广等优点,是一种理想的单级单吸离心式管道循环增压泵。 心情小星星