欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

大数据的国内外研究现状与发展动态分析报告

成而上比
核桃派
去百度文库,查看完整内容>内容来自用户:从心出发大数据的国内外研究现状及发展动态分析大数据的概念产生的背景与意义上世纪60年代到80年代早期,企业在大型机上部署财务、银行等关键应用系统,存储介质包括磁盘、磁带、光盘等。尽管当时人们称其为大数据,但以今日的数据量来看,这些数据无疑是非常有限的。随着PC的出现和应用增多,企业内部出现了很多以公文档为主要形式的数据,包括Word、Excel文档,以及后来出现的图片、图像、影像和音频等。此时企业内部生产数据的已不仅是企业的财务人员,还包括大量的办公人员,这极大地促进了数据量的增长。互联网的兴起则促成了数据量的第三次大规模增长,在互联网的时代,几乎全民都在制造数据。而与此同时,数据的形式也极其丰富,既有社交网络、多媒体等应用所主动产生的数据,也有搜索引擎、网页浏览等被动行为过程中被记录、搜集的数据。时至今日,随着移动互联网、物联网、云计算应用的进一步丰富,数据已呈指数级的增长,企业所处理的数据已经达到PB级,而全球每年所产生的数据量更是到了惊人的ZB级。在数据的这种爆炸式增长的背景下,“大数据”的概念逐渐在科技界、学术界、产业界引起热议。在大数据时代,我们分析的数据因为“大”,摆脱了传统对随机采样的依赖,而是面对全体数据;因为所有信息都是“数”,可以不再纠结具体数据的精确度,而是坦然面对信息的混杂;信息之“大”之“杂”,让我们分析的“据”也由传统的因果关系变为相关关系。国内外研究进展国外除在大数据的

以大数据为主题,写一篇1500字的文章

黑豹天
解心释神
世界包含的多得难以想象的数字化信息变得更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?                            一:大数据的定义。1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。3、大数据应用,是 指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。                      二:大数据的类型和价值挖掘方法1、大数据的类型大致可分为三类:1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。2、大数据挖掘商业价值的方法主要分为四种:1)客户群体细分,然后为每个群体量定制特别的服务。2)模拟现实环境,发掘新的需求同时提高投资的回报率。3)加强部门联系,提高整条管理链条和产业链条的效率。4)降低服务成本,发现隐藏线索进行产品和服务的创新。                             三:大数据的特点业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:1、是数据体量巨大数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。2、是数据类别大和类型多样数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化 数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。3、是处理速度快在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。4、是价值真实性高和密度低数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。                                  四:大数据的作用1、对大数据的处理分析正成为新一代信息技术融合应用的结点移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。2、大数据是信息产业持续高速增长的新引擎面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。3、大数据利用将成为提高核心竞争力的关键因素各行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。4、大数据时代科学研究的方法手段将发生重大改变例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。                                     五:大数据的商业价值1、对顾客群体细分“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。2、模拟实境运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。3、提高投入回报率提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。4、数据存储空间出租企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。5、管理客户关系客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。6、个性化精准推荐在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。7、数据搜索数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典                                         六:大数据对经济社会的重要影响1、能够推动实现巨大经济效益比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。2、能够推动增强社会管理水平大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。3、如果没有高性能的分析工具,大数据的价值就得不到释放对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。                                           七:最后北京开运联合给您总结一下不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。1、从大数据的价值链条来分析,存在三种模式:1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,开运联合等。3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。2、未来在大数据领域最具有价值的是两种事物:

大数据平台可行性研究方案

鼓之
此何鸟哉
去百度文库,查看完整内容>内容来自用户:赵诚项目概述项目名称XXX区大数据平台建设项目。项目建设单位及负责人、项目责任人项目建设单位:XXX市XXX区人民政府办公室。项目负责人:项目责任人:编制单位编制依据本次项目建设主要依据国家及国信办提出的大数据发展规划,以及xx省XXX市委市政府提出的xx省发展计划和要求进行方案规划设计,方案编制依据主要包括以下内容:《国家电子政务工程建设项目管理暂行办法(发改委55号令)》《关于运用大数据加强对市场主体服务和监管的若干意见》《国务院关于印发促进大数据发展行动纲要的通知》(国发〔2015〕50号)《关于组织实施促进大数据发展重大工程的通知》《xx省云计算发展规划(2014-2020年)》《xx省促进大数据发展行动计划(2016-2020年)》《xx省政务服务大数据库建设方案(2016-2017)》《XXX市电子政务信息资源共享平台》《关于加快推进我市信息基础设施建设的意见》《关于加强信息资源开发利用工作的若干意见》建设目标、规模、内容、建设周期建设目标按照《xx省促进大数据发展行动计划》等文件中对大数据平台的功能和要求,结合XXX区政府工作的实际需要,建成由大数据中心、综合应用系统、数据库系统、大数据汇聚与共享平台和标准规范体系等组成的(其中一期建立政务资源数据库系统、共享数据库系统及经济与社会效益(5(((5(33数据库现状4信息化目标分析基于上述分析,数据存储量75

求一个大数据方向的开题点,研究生毕业论文开题点

狗跳舞
科罗维
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。对于“大数据”(Big data)研究机构Gartner给出了定义,“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。本回答被提问者和网友采纳

大数据是怎么研究的???

启示录
驚魂島
大数据就是对数据进行:数据采集数据存储数据处理数据分析的应该从数据库知识,统计知识,业务知识开始学习

有哪些关于大数据的硕士毕设题目

死而不祸
药也
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。对于“大数据”(Big data)研究机构Gartner给出了定义,“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

大数据的国内外研究现状与发展动态分析报告

慧观
黄金雀
去百度文库,查看完整内容>内容来自用户:从心出发大数据的国内外研究现状及发展动态分析大数据的概念产生的背景与意义上世纪60年代到80年代早期,企业在大型机上部署财务、银行等关键应用系统,存储介质包括磁盘、磁带、光盘等。尽管当时人们称其为大数据,但以今日的数据量来看,这些数据无疑是非常有限的。随着PC的出现和应用增多,企业内部出现了很多以公文档为主要形式的数据,包括Word、Excel文档,以及后来出现的图片、图像、影像和音频等。此时企业内部生产数据的已不仅是企业的财务人员,还包括大量的办公人员,这极大地促进了数据量的增长。互联网的兴起则促成了数据量的第三次大规模增长,在互联网的时代,几乎全民都在制造数据。而与此同时,数据的形式也极其丰富,既有社交网络、多媒体等应用所主动产生的数据,也有搜索引擎、网页浏览等被动行为过程中被记录、搜集的数据。时至今日,随着移动互联网、物联网、云计算应用的进一步丰富,数据已呈指数级的增长,企业所处理的数据已经达到PB级,而全球每年所产生的数据量更是到了惊人的ZB级。在数据的这种爆炸式增长的背景下,“大数据”的概念逐渐在科技界、学术界、产业界引起热议。在大数据时代,我们分析的数据因为“大”,摆脱了传统对随机采样的依赖,而是面对全体数据;因为所有信息都是“数”,可以不再纠结具体数据的精确度,而是坦然面对信息的混杂;信息之“大”之“杂”,让我们分析的“据”也由传统的因果关系变为相关关系。国内外研究进展国外除在大数据的

大数据时代

驱魔者
笨笨
大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据集合的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,图片,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)从不同的方面表达了客户的消费过程的方方面面。因此,一般来说,企业用以分析的数据来源越广越全面,其分析的结果就越立体,越接近于真实。因此,大数据分析意味着企业能够从不同来源的数据中获取新的洞察力,并将其与企业业务体系的各个细节相融合,以助力企业在创新或者市场拓展上有所突破。针对“数据量”这个话题,亚马逊CTO Vogels曾经说过,“在运用大数据时,你会发现数据越大,结果越好。为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持。一旦进入大数据的世界,企业的手中将握有无限可能。”可以预料,在不远的未来,企业如何通过抓住用户获取源源不断的数据资产将会是一个新的兵家必争之地。在这个层面上,Facebook、Twitter、Google、Amazon,包括电信运营商等领先企业具有无可比拟的优势。在大数据的领域里是否数据量越大越好?很多时候我们写文章,并不是想要去重复某一个众所周知的事实,而的是想从另外一个角度试图去质疑那些已成事实的事实,并不是想要去推翻,而只是去看这个事实是否存在另外的可能性,虽然很多时候我的那些质疑会漏洞百出,并显得幼稚可笑,但我觉得一个事物的健康发展需要不同的声音,而这正是我们写文章的意义所在。所以,我现在问题是,在大数据的领域里是否数据量越大越好?对于这个问题,我觉得应该分两个层面来看,第一个层面是,对大数据这个整体而言,数据肯定是越大越好的,多元的数据能让不同行业,不同组织都可以从大数据中寻找到解决问题的方法,也是基于此,现在越来越多的企业组织通过不同的终端、应用或者其他手段去疯狂地收集多元的数据,大数据让人们能有足够的能力和视野将地球(包括地球上的一切)作为一个整体去看待,这是在从前无法想象的。第二个层面是,对于大数据的具体应用而言,数据量是否越大越好,我却有不同的看法。我的理解是,在大数据的实际应用中你用以分析的数据量越大,你能得到的东西就越多,而至于得到的那些东西是否是你所需要的,或者对你是否有价值的,没有人能保证。就如同树林里有100条路,每条路上都有一些你觉得有意思的东西,如果你有足够的时间,你可以走遍这100条路,收获很多有意思的小东西,但不是每一条路都会让你得到真正有价值的东西。经常做数据分析的朋友应该会有同感,在分析的过程中你会发现不同的数据通过不同的组合导入不同的分析模型会得到很多不同的结果,有时候会有一些很新鲜的结果被发现,这会让你很惊喜,但大部分这些新鲜的结果最后只会出现在你的微博里,而不会出现在正式的分析报告中,因为分析报告是为解决某一具体问题而存在的,旁枝末节太多会显得臃肿且容易混淆。所以,我认为,在大数据的具体应用面前,我们先要做的是把“大数据”这个概念忘掉,我们必须弄清楚到底想从大数据中得到什么,然后带着目的去收集有用的数据,输入至分析模型中,直接导向我们想要的结果。否则你将花费大量时间、资源成本去获取数据,分析数据。我们需要大数据应用是能够帮助解决问题的行为洞察,而不是试图研究每一条能够得到的信息。不得不说,大数据的世界太魔幻了,里面的诱惑很多,如果你不是带着明确的目标去应用,你很有可能被陷入在五光十色的诱惑中无法自拔。即使你走进了一座金山,最后你能带走的最多也只是你能提动的一小口袋。另外,这同时也揭示,为了避免应用者困在“大数据的金山”,大数据必须往下细化,针对不同行业不同领域的特定问题制定不同的解决工具,未来大数据将会遵循消费化模式,核心基础设施将作为服务或应用程序来提供。大数据,云计算,看起来都是非常高大上的东西,还是切合点实际,先落地再说吧。我们公司数据量比较大,用的是国产的FineBI软件,还不错!

目前大数据处于什么发展阶段?

等着我
施为
使用视点大数据范畴已有很多成功的大数据使用,但就其效果和深度而言,当时大数据使用尚处于初级阶段,依据大数据剖析猜测未来、指导实践的深层次使用将成为发展要点。当时,在大数据使用的实践中,描述性、猜测性剖析使用多,决议计划指导性等更深层次剖析使用偏少。管理视点大数据管理系统远未形成,特别是隐私维护、数据安全与数据同享使用功率之间尚存在明显矛盾,成为限制大数据发展的重要短板,各界已经意识到构建大数据管理系统的重要意义。其间,隐私、安全与同享使用之间的矛盾问题尤为凸显。一方面,数据同享敞开的需求非常火急;另一方面,数据的无序流通与同享,又或许导致隐私维护和数据安全方面的严重风险,必须对其加以标准和限制。技能视点数据规模高速增加,现有技能系统难以满意大数据使用的需求,大数据理论与技能远未成熟,未来信息技能系统将需求颠覆式创新和变革。近年来,大数据获取、存储、管理、处理、剖析等相关的技能已有显著发展,可是大数据技能系统尚不完善,大数据基础理论的研究仍处于萌芽期。关于目前大数据处于什么发展阶段,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。