欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

求高中数学研究课题

鬼精灵
高拱
  高中数学研究性学习课题选题参考  作者:德化一中数学组  数学研究性学习课题  1、银行存款利息和利税的调查  2、气象学中的数学应用问题  3、如何开发解题智慧  4、多面体欧拉定理的发现  5、购房贷款决策问题  6、有关房子粉刷的预算  7、日常生活中的悖论问题  8、关于数学知识在物理上的应用探索  9、投资人寿保险和投资银行的分析比较  10、黄金数的广泛应用  11、编程中的优化算法问题  12、余弦定理在日常生活中的应用  13、证券投资中的数学  14、环境规划与数学  15、如何计算一份试卷的难度与区分度  16、数学的发展历史  17、以“养老金”问题谈起  18、中国体育彩票中的数学问题  19、“开放型题”及其思维对策  20、解答应用题的思维方法  21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类  22、高中数学的学习活动——解题后的反思——开发解题智慧  23、中国电脑福利彩票中的数学问题  24、各镇中学生生活情况  25、城镇/农村饮食构成及优化设计  26、如何安置军事侦察卫星  27、给人与人的关系(友情)评分  28、丈量成功大厦  29、寻找人的情绪变化规律  30、如何存款最合算  31、哪家超市最便宜  32、数学中的黄金分割  33、通讯网络收费调查统计  34、数学中的最优化问题  35、水库的来水量如何计算  36、计算器对运算能力影响  37、数学灵感的培养  38、如何提高数学课堂效率  39、二次函数图象特点应用  40、统计月降水量  41、如何合理抽税  42、市区车辆构成  43、出租车车费的合理定价  44、衣服的价格、质地、品牌,左右消费者观念多少?  45、购房贷款决策问题  研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)  《 立几部分 》  问题1  平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。  问题2  用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。  问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。  问题4  异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。  问题5  立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。  问题6  作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。  问题7  等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。  问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。  《解几部分 》  问题9  对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。  问题10  我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。  问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。  问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。  问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。  问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。  问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。  问题16  解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。  问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。  问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。  问题19 求轨迹问题中,纯粹性的简捷判别。  问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。  问题21 对平移变换的解题功能进行综述。  问题22  与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。  《函数部分 》  问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。  问题24 整理求定义域的规则及类型(特别是复合函数的类型)。  问题25  求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。  问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。  问题27 利用条件最值的几何背景进行命题演变,与命题分类。  问题28  回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。  问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。  问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。  问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?  问题32  对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。  问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。  《三角部分 》  问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。  问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。  问题36 整理三角代换的的类型,及其能解决的哪几类问题。  问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为  从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。  问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。  问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。  问题40  三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。  《不等式部分 》  问题41  一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。  问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。  问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。  问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。  问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。  问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。  问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。  问题48 探索绝对值不等式和物理模拟法  如果还有什么相关的课题,请各位同行提出。参考资料:http://sx.dhyz.com/new/Article_Print.asp?ArticleID=174

高中数学课题研究报告

不与物交
酷学院
一、 课题报告的结构及写作方法 撰写课题报告有一般性的共同要求。但不同类型的课题报告由于其结构的不同,表现出不同的风格和特色。研究者撰写课题报告,首先必须把握各类报告的特征。 教育调查报告是对某种教育现象的调查,经过整理分析后的文字材料。一般由题目、引言、正文、讨论或建议、结论等几部分组成。 教育实验报告是教育实验之后,对教育实验全过程及其结果进行客观、概括地反映的书面材料。一般由题目、引言、实验方法、实验结果、结论、分析与讨论、参考文献和附录等几部分组成。 教育经验总结报告是对在教育教学实践中,经过去粗取精、去伪存真的积极探索而积累起来的经验的系统化、理论化的书面材料。由题目、引言、正文、结尾等几部分组成。 至此可见,课题报告的写作形式是不尽相同的,但可以归结为前言,正文、结论这种三段式的基本格局。 一篇完整的教育课题报告。除了上述几个组成部分外,还应有署名和参考资科两个部分。其目的是表示对报告负责并表明对报告的所有权。附录和参考资料是必须向读者交代的一些重要材料,参考文献是指在课题报告中参考和引用别人的材料和论述。应注明出处、作者、文献标题、书名或刊名、卷期、页码、出版机构及出版时间。 二、撰写课题报告的基本要求 1.引言 引言是课题报告的开场白。引言部分必须说明进行这项课题研究工作的缘由和重要性;前人在这一方面的研究进展情况,存在什么问题;本研究的目的,采用什么方法,计划解决什么问题,在学术上有什么意义等。要求简明扼要,直截了当。应该指出的是,有的人在文章中对前人的工作随意否定,或轻易断言此问题前人没有研究过,属于 历史空白,这是不妥当的。怎样开头为好,应根据课题报告的内容、各人的写作风格等因素全面考虑后确定。但必须注意防止面面俱到,不着边际,文不对题;或一步登天,言尽意止,不留余地等毛病。 2.正文 正文是课题报告的主体,占报告的绝大部分篇幅;是课题报告的关键部分,体现着报告的质量和水平。所以,必须重视正文部分的撰写。各种不同类型的课题报告在正文部分叙述的内容不尽相同。但要写好正文部分,都必须掌握充分的材料,然后对材料进行分析、综合、整理,经过概念、判断、推理的逻辑过程,最后得出正确的观点。并以观点为轴心,贯穿全文,用材料说明观点。做到材料与观点的统一,这是基本的要求。对初学者来说。往往易出现两种毛病:一种是只限于表述自己的论点,而缺乏科学的论证;只有论点,没有材料,缺乏说服力。另一种毛病是罗列大量材料,平铺直叙,看不出其主要论点是什么。出现上述毛病的原因就在于没有能以确凿的论据来说明论点,做到论点与论据的统一。为了科学、准确、生动形象地表达研究成果,提高说服力和可信性还应减少不必要的文字叙述,而采用图、表、照片来集中反映数据和关键的情节。当然,选用的图、表、照片也要注意少而精,准确无误。 3.结论 课题报告的结论部分是作者经过反复研究后形成的总体论点,它是整篇报告的归宿。结论必须指出哪些问题已经解决了,还有什么问题尚待研究。有的报告可以不写结论,但应作一简单的总结或对结果开展一番讨论;有的报告可以提出若干建议;有的报告不专门写一段结论性的文字,而是把论点分散到整篇文章的各个部分。不论是哪种类型的科学研究报告。都必须总结全文,深化主题,揭示规律。而不是正文部分内容的简单重复,更不是谈几点体会,喊几个口号。写结论必须十分谨慎,措词严谨,逻辑严密,文字简明具体,不能模棱两可,含糊其辞。 三。撰写课题报告应注意的几个问题 1.重点应放在介绍研究方法和研究结果方面。课题报告的价值是以方法的科学性和可靠性为条件的,而这两者又有内在的联系,因为只有研究方法是科学的,才能保证研究结果是可靠的。人们阅读或审查课题报告,主要关心的是如何开展研究,在研究中发现了什么问题,这些问题解决了没有,是如何解决的。研究结果在现阶段达到什么程度,还有什么问题需要继续解决等。因此,写作课题报告,主要精力应花在方法和结果部分,把研究方法交代清楚,使人感到该项研究在方法上无懈可击,从而不得不承认结果的可靠性。 2.理论观点的阐述要与材料相结合。在课题报告中怎样使自己的观点得到有力的论证,是应该关心的重要问题。论点的证实除了必须依靠逻辑的力量外,还需要依靠科学事实的支撑,做到论点与事实相结合。课题报告一定要有具体材料,尊重事实,从事实中列出观点。首先在论述过程中要处理好论点与事实的关系,要求研究者首先选好事实。除了要注意事实的典型性、科学性以外,还要善于用正反两方面的事实来说明问题,揭示普遍规律。其次是恰当地配置事实,用事实论证,主要是用来帮助人们理解不熟悉的论点。 3.分析讨论要实事求是,不夸大,不缩小。在下结论时要注意前提和条件,不要绝对化,也不要以偏概全,把局部经验说成是普遍规律

求高中数学课题研究内容实施!!!

伏生
交叉点
找了一些,希望对你有用一.教材分析主旨:1、在生活中发现,在生活中学习,为生活服务。 2、渗透EPD思想。《数学课程课标》指出:义务教育阶段的数学课程要使学生“人人学有价值的数学”。对学生来说,什么是有价值的数学呢?我认为,“数学价值”主要体现在学生现在和未来社会生活中对所学知识的应用。在《空间与图形》中有关立体图形的一些内容,在我们的生活中有着广泛地应用。作为一节复习课,在教学内容的设计上,我不仅重视学生对概念、公式的把握,同时还要让学生在解决问题的过程中,认识到一般规律和具体问题的关系,今后能灵活地应用所学知识解决实际问题。(1)在生活中发现问题。数学源于生活,作为教学活动的组织者、引导者与合作者,我们有责任把学生引入丰富多彩的现实生活,带引他们去发现数学、捕捉数学。(2)在生活中学习。《数学课程课标》还指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的……”所以数学规律的发现和应用不能只是简单的呈现,而需要调动学生的多种感官参与到数学活动去,并在活动的过程中体验数学问题的探索性和挑战性,感受数学思考过程带给我们的乐趣。(3)为生活服务。数学源于生活,终将服务于生活。数学知识的学习与应用如果脱离了生活实际就会失去其本身所具有的强大的社会生命力。在设计这节复习课时,我从现实生活中去寻找可开发利用的学习资源,利用“火柴盒”复习立体几何的有关知识。之所以选择“火柴盒”作为研究的素材,一是因为学生对它既熟悉又陌生,二是其中蕴涵着许多数学问题,三是利用它可以进行环境保护的思想教育,于是我把课题定为《生活中的数学》。总之,通过本节课的学习,使学生再一次感受到生活中有许多值得我们去探究的数学问题,只要我们做一个有心人,主动地去发现信息、运用信息,就会发现我们生活中处处有数学。二.学生分析我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互连网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的,已经能在教师指导下,从日常生活中发现并提出简单的数学问题,了解同一问题可以有不同的解决办法,有与同伴合作解决问题的体验,并能够表达解决问题的大致过程和结果,能探索出解决问题的有效方法,并试图寻找其他方法。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。因此,教学内容的安排,教学过程的设计,教学方式的选择,以及教学手段的使用都要从学生的需要出发。本节课我选择火柴盒作为贯穿全课的唯一的学习用具,而且人手一个,就是要让学生在短短的40分钟内,充分了解它的构造,以及由它而产生的许多奇妙的数学问题,从而激发学生学习数学的兴趣。作为六年级即将毕业的学生,对已学的几何公式的掌握应该不存在很大的问题,但如何能利用学过的知识灵活地解决问题,学生的水平是参差不齐的,有些学生会感到很困难,因此教师要在平时的教学中,有意识地训练学生解决问题的能力,并充分发挥优等生的作用,发挥小组的作用,使所有的学生都能在原有的知识基础上得到提高。三.教学目标教学目标:1.通过进一步认识火柴盒的构造,能从数学的角度提出一些数学问题,并能说出用哪些相关的数学知识进行解答。2.培养学生学数学、用数学的意识,以及在解决数学问题的过程中敢于探索、敢于挑战的精神。3.通过教学对学生进行环境保护的教育,渗透EPD的教育思想,即环境保护和可持续性发展。教学重点:计算火柴盒的实际用料面积。教学难点:1.多种方法计算火柴盒的实际用料面积。2.火柴盒的包装问题。教具准备:课件、火柴盒。四.教学过程:(一)谈话引入。 5分同学们手里都有一个火柴盒,你见过吗?今天我们就利用它来研究一些数学问题。问:从数学的角度,我们都可以提哪些问题呢?解决这些问题要用到我们学过的哪些知识呢?老师提出要求:(1) 先自己想一想。(2) 小声和同组的同学交流一下,看看哪个组说的最充分。(3) 全班交流。涉及到的问题:(1) 求火柴盒的表面积。 利用的知识:长方体的表面积:S=2(ab+ah+bh)(2) 求火柴盒的体积(容积)。师:如果壁厚忽略不计的话,可以看成解决的是同一个问题。利用的知识:长方体的体积:V=abh(3) 求占地面积。问:怎么放占地面积最大?怎么放占地面积最小?师:占地儿的大小与火柴盒摆放的方法有关。(4) 求实际用料面积(用了多少纸)。问:求几个面的面积?(9个) 哪9个?(外盒4个面的用料面积+内盒5个面的用料面积)(点评:通过进一步认识火柴盒的构造,能从数学的角度提出一些数学问题,并能说出用哪些相关的数学知识进行解答。)(二)求实际用料面积。 10分师:刚才同学们提出了一个很有研究价值的问题,求实际用料面积。1.先自己做,至少用两种方法。(学生自己测量需要的数据:a=4.5cm b=3.5cm h=1cm)师:没有数据,立刻知道去测量,这种意识很好。2.小组交流,看哪个组想出的方法最多。3.全班交流。(1) 外盒的用料面积加上内盒的用料面积。(2) 按两个表面积算,减去多算的。(3) 按一个表面积算,加上少算的。(4) 数一数大面有几个,中面有几个,小面有几个,最后把它们的面积加起来。(5) 其它方法。4. 教师小结。问:你最喜欢哪种方法?看来,同学们都有自己喜欢的方法,你觉得哪种方法最好你就使用哪种方法,同时也可以借鉴其他人的方法。(点评:有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。)(三)火柴包装问题。 10分1.师:火柴在出厂前是要进行包装的。如果要把两盒火柴包装在一起,都可以怎样包装?你准备怎么包?说说理由。2.计算把两盒火柴包装在一起,至少需要多少包装纸?(1)学生独立计算(2)汇报计算方法方法一:两个表面积减去两个大面的面积方法二:直接利用公式计算新拼成的长方体的表面积方法三:其它方法3.问:想知道火柴盒厂是几盒作为一个包装的吗?(一般是10盒)怎么包装最省纸?课下你们可以继续研究。(点评:这一内容的安排,可以考察学生是否会运用学过的知识灵活地解决问题)(四)求火柴盒的体积(容积)。 12分问:你们知道制造火柴的主要原料是什么?(木材、磷)如果要把这个火柴盒装满(缝隙忽略不计),大约需要多少木材?(求的是火柴盒的容积。)板书:4.5×3.5×1=15.75(cm3)师:在我们看来,制造一盒火柴需要的木材并不多,但是,当你看到以下这些数据时,我想你会惊讶的。电脑出示幻灯片(森林背景)据资料记载①:火柴作为普及型引火用具在我国已有150年的历史。师:近年来由于汽体打火机的冲击,火柴的用量大减。但目前国际市场已禁止生产和销售汽体打火机,我国也限制汽体打火机的生产和销售,因此火柴作为普通引火用具在国内仍有广泛的市场。据调查统计②全国每天需要20万标箱火柴,而用木材生产火柴每天需消耗7200立方米的优质木材。 问:一年按365天计算,一年大约要用掉多少木材呢?③7200×365=2628000(立方米)问:这些木材从哪来?需要砍伐多少棵大树呢?咱们一起来估算一下好吗?以下是一些相关的数据:一般用杨树制造火柴,这种树成活15至20年能被砍伐,直径大约是40厘米,高15至20米。师:我们把可用部分可以看成是一个什么体?(近似的圆柱体)那可用部分的体积是多少呢?要用到我们学过的什么知识?(求圆柱体的体积 V=Sh)(1) 学生试算。(2) 反馈交流。202×3.14×1500=1884000(cm3)=1.884(m3)2628000÷1.884≈140(万棵)④:一棵树的占地面积大约是20平方米。那一年我们将砍伐多大面积的森林呢? 140×20=2800(万平方米)=2800公顷师:中国在未来相当长一段时间内,依然需要在人口压力大而资源相对不足的基础上推进经济发展,大量的砍伐,甚至是不正确的砍伐树木,就等于在不断地破坏我们赖以生存的环境,因此处理好经济发展和环境保护的矛盾,保持经济的可持续发展,是非常重要的问题。有关专家指出,用麦秆、草秆为原料生产火柴,可以节省大量木材,市场前景广阔。(点评:通过教学对学生进行环境保护的教育,渗透EPD的教育思想,即环境保护和可持续性发展。)(五)课堂小结。 3分1.用一句话说说这节课你最大的收获和体会是什么? 2师:今天我们解决的是生活中的数学问题。(揭示课题)生活中还有许多问题值得我们去探讨、去研究。生活是一个大课堂,我们要善于从数学的角度去观察生活,体验生活。(六)板书设计生 活 中 的 数 学面积:长方体的表面积 S= 2(ab+ah+bh)体积:长方体的体积 V= abh 圆柱体的体积 V= Sh五.教师反思一提到复习课,别说学生,就连老师都挠头。学过的旧知识被老师一股脑地搬出来,然后就是机械地要求学生记定义、记概念、记公式,接踵而来的就是大量的练习。对这样的复习,学生的兴趣不高,教师也被搞的疲惫不堪。如何才能把复习课上的生动有趣呢?本节课我又进行了一次大胆的尝试,利用火柴盒让学生从数学的角度提出问题、解决问题,把数学与生活巧妙地结合在一起,既掌握了相关的数学知识,同时又进行了一定的思想教育,可谓是一举两得。更重要的是学生不再认为复习课枯燥无味,而是节节有新的收获。火柴盒曾是我们生活中必不可少的一样东西,但近年来被其它一些东西所取代,很多学生对它缺乏了解。新课标指出,教师应因地制宜,有意识、有目的地开发和利用各种资源。于是我把它引进课堂,并人手一个。学生在计算火柴盒的实际用料面积时方法多样,真正做到了一题多解;在讨论火柴盒的包装问题时,学生的包装方法不尽相同,大多数同学从省纸的角度出发,认为怎样消失的面最大就怎样包,也会有个别的同学是从美观的角度出发,提出自己的包装方案,体现出现代学生的个性特点。整节课把学生的自主探索与合作交流有机地结合起来,既有师生之间的互动,也有生生之间的互动。最精彩的还应是学生最后的发言:“我觉得,我们真的该保护环境了……”你要先确实一个自己或小组感兴趣的内容,然后分工合作,得到结论,过程中有不清楚的地方再问,首先你要确定一个课题

高一数学研究性课题

无倦
如果你是想活跃气氛,我可以给你很多适合高一数学思维的题目,但是如果你要是和学的东西搭配我暂时想不出来,可以给你两个题目做参考 有8个钢球看上去一样(外形完全一样),其中有一个超重,现在我有一个天平,请问我如何只秤两次,把这个超重的钢球选出来(选自微软一招聘题) //考的思想有:分类思想 还有一个题目: 一个水杯里面有一杯水,满的,我每次喝一口喝水杯中水的一半,我们知道是喝不完的,杯子里面总是会有水。 (数学里面的谬论)一只小狗朝一个主人跑过去,我们这样设想,小狗要跑到他的主人身旁,首先要跑到他们距离的一半,当跑到这个主人一半距离的时候,小狗又要继续跑到他们俩距离的一半才能到主人面前,小狗要跑到主人身旁总是要跑到他们距离的一半才能达到目的....我们知道小狗是能跑到主人的身旁的,甚至还可能超过主人继续向前跑。 问题出来了,一杯水我们把杯底看成是一个参照点,而同样地,那个主人我们把他看成参照点,这样小狗和水杯中的水面可以看成是朝他们运动的,为什么会有不同的结果呢? 很容易理解的问题,其根本原因在哪儿呢?(这个问题是我前几天想出来的。没有答案的,学生踊跃发言记录下)到时给我留言哦。探究直线与圆的关系

提供一些数学研究课题,可以写高中数学论文的那种

王三环之
北极圈
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:http://sx.dhyz.com/new/Article_Print.asp?ArticleID=174参考资料:爱o不释手

如何开展好高中数学研究性学习

天其运乎
连翘
研究性学习(inquiry learning)是指学生在教师指导下,以类似科学研究的方法,从学习生活和社会生活中选择并确定专题,积极主动地获取知识,应用知识,解决问题的学习活动。这种学习活动的核心是改变学生的学习方式,强调自主学习、合作学习。数学教学大纲中对研究性学习提出了以下教学目标:(1)学会提出问题和明确探究方向;(2)体验教学活动的过程;(3)培养创新合作精神和应用能力;(4)以书面材料、口头报告,墙报等形成反映研究性成果,学会交流。这就要求我们对研究性学习的教学不同于传统知识的教学。根据高中新课程计划(试验修改稿),数学大纲要求,高中数学教学中将有1/6左右的教学时间用于开展研究性学习。这对教师的教学能力提出了更高的要求。教师本身是否具有进行研究性学习的能力,怎样对学生进行研究性学习的指导,实现教学行为方式的重大转变,需要有一个较长的适应过程。本文试图从高中数学教学的角度,谈谈个人开展研究性学习的一些实践与认识。以期为尽快实现研究性学习教学从理念到操作的转化抛砖引玉。一、研究性学习教学案例分析、介绍:(1)提出问题往往比解决问题更重要。教师首先要根据教学目标,寻找与教学内容相关的,可以激发学生兴趣的材料,创设出特定的情境,向学生提出要研究的领域,引导学生发现并提出需要探究的问题。爱因斯坦曾说过:“提出一个问题往往比解决一个问题更重要,因为解决问题也许仅仅是一个数学上的技能而已,而提出新的问题,新的可能性,从新的角度去看待旧的问题都需要创造性的想象力”,因此,提出问题是研究性学习要培养的主要能力之一。案例一,“一个等差数列的性质”的教学如果 成等差数列,则有即 …………(1)在讲过这一性质后,我要求同学们推广上述命题(设计、提出问题,并讨论解决办法)。下面摘录同学在研究性学习教学中提出的问题,、结论及一些思考。问题一,如果 成等差数列,依照(1)式能得到什么结论?即 =0…………(2)问题二,如果 成等差数列,能得到什么结论?即 …………(3)问题三,如果 成等差数列,能得到什么结论?即 时,…………(4)问题五,如何证明上述结论,将上述命题的条件与结论互换是否可行?到此,同学们采取研究方法仍然是特殊到一般的方法,但同学们很快发现当 时,上述反命题显然成立,当 时,上述反命题就不成立了,如1,2,4,7满足 ,但这此数显然不成等差数列。那是否研究到此结束了呢?问题六,同学很快就发现当 时, 可以得出 ,这就提示给我们,如果要使数列 成等差只需再添一个条件, =0,从而 成等差数列就需添两个条件……这样,同学们又估计到了它的一个反命题:成立,则 成等差数列………………(5)问题七,利用数学归纳法证明上述命题。在这样的研究性学习的教学过程中,学生们体验到了不断提出问题,解决问题所尝到的成功的喜悦。能提出需要探究的问题,在这里显然比找到答案更为重要。其实很多规律就蕴藏在我们平时教学之中,关键是我们的教师是否能让学生引起足够的重视,并引导学生发现与提出问题。(2)让学生积极参与,体验合作在研究性学习教学过程中,教师应创设让学生充分参与的情景,实现有意义的自主学习。一方面要给予学生自主学习的时间,让学生有足够的时间去探索、思考、交流。另一方面,教师要鼓励学生质疑问题,欢迎学生争辩、发表独立见解,确保学生全程参与,全方位参与。从这层意义上讲,研究性学生即要培养学生参与意识,学会合作交流。案例二,一道例题引发的研究已知 是周期函数,且周期为2,等式 对一切 均成立,求证 为偶函数。这是高一理科班函数复习时的一道例题。这道例题很普通,但内涵却很丰富,颇有研究价值。例题教学后,把学生分成5人一组,要求对这个问题进行多方位的研究,然后交流研究成果(老师提示:研究条件与结论之间关系;从图像的角度进行研究;猜测具有怎样的性质,函数是周期函数;对奇函数、偶函数的定义再作推广;通过研究得到什么启示等)。下面将各小组开展研究性学习活动后,各小组交流情况整理如下:[小组I研究结论]两个条件和一个结论这三者中的任何两者都可以推证出第三者。[小组II研究结论]由 为偶函数,则对称轴方程为对一切 成立,对称轴方程得出下列猜想并可证明:(1)若一个函数的图像有两条不同对称轴,这个函数是周期函数。(2)若一个函数的图像有两个不同对称中心,这个函数是周期函数。(3)若一个函数的图像有一个对称中心和一条对称轴,则这个函数是周期函数。[小组III研究结论]对函数 存在常数 ,使函数在定义域内任意 ,若都有 成立,则 为偶函数,若都有 成立,则 为奇函数。[小组IV研究结论]通过研究得出启示一,函数性质,如奇偶性,周期性与图象对称性是密切相关的;启示二,数形结合在发现问题,研究问题和解决问题中起着极为重要的桥梁作用。(3)发展应用数学知识解决实际问题,使数学回归到生活中去。研究性学习教学实施过程中应特别注意理论与实际生活的联系,学以致用,重在知识技能的应用,是研究性学习的很重要特征之一,通过研究有利于引导学生关注社会、关注自然,培养学生社会责任心和使命感,形成积极的人生态度。这在以往传统的教学课上是无法得到的。案例三,建立函数关系,解决实际问题函数的本质是变量与变量之间的对应关系,它反映事物运动变化过程中的内在联系,不少实际问题都可以抽象概括成函数表达式。即建上一个函数模型,从而简捷、准确地找到合理的答案。然而,由于本质上的差异,反映变量之间的依赖关系的函数模型呈现各种不同的面貌,这给我们的学生深入社会,利用数学知识解决实际问题提供可研究性学习的基础。为激发学生的学习兴趣,我布置了一个作业,“调查家庭生活中数学素材,从建立函数模型角度,为自己家庭解决实际问题”,一星期后,学生收集的资料五花八门,经分组整理,学生提出了各种各样的研究问题。如家庭生活中的分期付款问题(购房、买车等),知识售价、月利息、每月还款数,需多少时间还清,每次还款多少最合算;家庭装修问题;合理设计家庭开支问题;股票投资问题;家庭养殖业问题等等。老师把学生收集的素材分类,合并、提出修改意见后,分小组确定研究方向。经小组研究,总结出了许多解决实际问题的函数模型,如代数函数模型,指数函数模型,线性规划模型,盈亏平衡模型,投入产出模型等。解决实际问题的过程是学生体验研究性学习教学活动的过程,问题解决(无论是有答案、无答案,还是暂时无答案)都会使学生兴奋、投入,更重要的是,研究性学习的整个过程,自始自终学生都是研究者,培养了学生科学的态度,发展学生对家庭、对社会责任心,让同学在实践研究中获得直接经验。二、研究性学习教学基本框架及思考。1、研究性学习教学与传统数学教学比较,其最大区别在于传统课程有市统编教材,有较为成熟的实施教学方法、手段、评价体系,而研究性学习教学很多内容还是一块未开发的“自留地”,相对自由度较大,是教师自主的开发。根据新课程计划对研究性学习教学提出的目标,结合本人教学实践,我认为研究性学习教学的主要特点是:以发展探究思维为目标,以学科基本结构为内容,以再发现为学习方法。应强调(1)学生是“发现者”,在教师指导下,激发学生对数学学科本身的兴趣,通过自主探索,实践活动,去发现规律。(2)教师要为学生创设一个自主的学习环境,在教师指导下,将启发探究、评价、总结有机结合。下面让我们试图勾勒一下研究性学习的基本框架(如表所示)过程 内容 目的 操作问题情境阶段 确定课题 运用学生原有的知识和经验,选择有能力进行探索的问题 启发学生在已有一些知识的基础上,提出自己感兴趣的课程,确定对课题的探讨步骤及研究方案实践体验阶段 实证收集 了解和学习收集资料的方法,学会观察和检索 引学学生深入实际,围绕问题,引经据典,旁征博引,收集数据与事实依据进行分析 从各种信息中归纳出解决问题的重要思路,学会筛选和判断 要求学生对采集的事实及数据进行去粗取精、去伪存真的分析,对课题、议题作出“是什么”及“为什么”的初步解释表达交流阶段 初步交流 认真吸取他人意见和建议,不断补充和完善 初步研究成果在小组内或同学中充分交流得到结果 完成课题研究,通过深层次的思考,得到知识结论的体验 形成书面材料和口头报告,以辩论会、研讨会、展板、墙报、电子课件、网页等方式表达,进行相互交流和研讨2、研究性学习的教学大都采用课内研讨型。让学生经历不同背景之中,去发现问题,实施解决问题的方法,检验、论证及交流所获得的结论。也就是让学生自己思考研讨,怎么做、做什么,而不是让学生接受老师思考的现成的结论。它是一种积极的学习过程。研究性学习的教学内容,要能够引起全体学生的主动思考,引起同学(或与老师)之间交流。因此,研究的问题应当具有不同的层次性,要使得绝大部分学生都能够思考它,并且都有思考的空间。同时应允许结果的多元性,在可能的前提下,要使得不同的学生都能表达自己对问题的理解及见解的机会。3、研究性学习教学对学生的要求与评价。学生的发展是课程实施的出发点和归宿。课程实施应当着眼于学生全面素质的提高,为学生健合人格的形成以及能力、知识诸方面的学习与发展创造条件,研究性学习教学要特别重视对学生综合能力的培养:(1)要有敏锐的观察与思考能力;(2)要有搜集与积累资料的能力;(3)要有综合运用各科知识解决实际问题的能力;(4)要有一定的人际交往能力和合作精神。研究性学习教学中,学生各种活动中获得的不仅仅是知识,更是一种学习品质、能力、从而为他们的终身学习、长远发展奠定坚实的基础。由于研究地点、请教对像、研究小组的不同,对学生参与研究性学习的评价不可能有统一标准,教师应以肯定为主,保护学生参与积极性。应从(1)学生参与研究性学习活动态度情况;(2)学生在研究性学习活动中获得体验情况;(3)学生创新精神、社会实践能力发展情况;(4)交流合作情况等综合起来加以评价。4、研究性学习教学对教师的要求:在研究性学习教学中,教师是组织者、参与者和指导者。教师在教学目标的设计、教学活动的组织、现代化教育技术的运用等方面都要有利于每一个学生的发展。教师的教学是富有创造性的活动,每一位教师都有责任爱护和培养学生的探索精神、创新精神,营造崇尚真知、追求真理的氛围,促进学生自主学习,独立思考,为学生禀赋和潜能自由、充分地发展创造宽松的环境。实施研究性学习教学,培养学生的创新能力,关键在于必须有创造型的高素质教师。他们必须具备:(1)超前的教育观念;(2)快速接受新知识的能力;(3)高超的教学技能:①能充分发挥学生的全体作用的能力;②能熟练使用现代教学手段的能力;③娴熟的德育技能;(4)具有开拓创新精神和较强的科研技能。

求高中数学研究性学习《数学的发展历史》课题背景以及课题目的,急用.

此剑一用
神秘眼
  研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。具体地说,它所研究的内容是:  ①数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。按其研究的范围又可分为内史和外史。  内史 从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;  外史 从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。  数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。  人们研究数学史的历史,由来甚早。古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。  近代西欧各国的数学史研究,是从18世纪,由J.É.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经J.de拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。  ①通史研究 代表作可以举出M.B.康托尔的《数学史讲义》(4卷,1880~1908)以及C.B.博耶(1894、1919)、D.E.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著《古今数学思想》一书,被认为是70年代以来的一部佳作。  ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有J.L.海贝格、胡尔奇、T.L.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。  ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。  ④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J.-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”  ⑤历代数学家的传记以及他们的《全集》、《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。  ⑥专业性学术杂志 最早出现于19世纪末,M.B.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。  中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。  在中国古算书的序、跋中,经常出现数学史的内容。如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位 《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。  以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人。②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。  利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的。经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。  从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。

高中数学解题研究第1辑适合数学基础薄弱的吗

再生号
一.解题时需要注意的问题   1.精选题目,避免题海战术   只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。   2. 认真分析题目   解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。   3. 做好题目总结   解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:1)在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。基础薄弱一般是基础知识掌握的不扎实,不会用。jingrui

高中数学哪些知识点最难学最让人崩溃

韩国版
老大妈
高中数学重点有什么?该怎样攻克?高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.高中数学知识一、函数和导数,函数可以说是整个高中数学的关键.在高中数学当中,每一个.板块都需要函数的引导.这是高中数学的一根纽带.在高考数学中,函数这些内容方只在30分左右,其中包括指数,对数,还有图像的变化.考察的内容,关键是以填空的形式,还有选择的形式,有的还有在解答题需要让你画一些图像来正确解答.二、数列,数列也是高中的重点内容.其实数列在初中的时候我们就经历过,我们就学过,只不过数列在高中这个阶段也是重要的一个版块儿.他可以让你算出钱一个数列的数值都是多少?还有等比数列,等差数列,比较好一点的就是这些不用画图,像你就可以算出来这一个板块还是比较简单,只要你记住一些死公式,往里边套就好.三、三角函数,三角函数也是高中数学重点内容.三角函数的考查一般就是在诱导公式还有俩差公式或者就是证明求解.还有图像的分析会让你.算出图像平移的变化,还有对称的变化,还有一些单调性,单调区间周期性.最后一个对函数的考查就是用实际例题几何的综合.四、几何函数综合,这种综合题也是高考比较常见的题型,通常也在二三十分左右梯形,也就是考察一些线性的规划,还有圆锥的定义圆锥,圆柱都是考察的重点.还会让你算一些面积,表面积一些体积.还有侧面积或者切去某块儿部分让你算出它的面积.五、向量,向量这个板块儿是必修科目当中最后一个重点板块儿.向量我们在刚开始接触的时候,我们会觉得它是一条射线.关键的就是它可以精确地算出圆柱和圆锥的位置关系还可以算出他们的加减法,但是简答都是会有一定的位置关系和数量,关键都是以这种计算为主.向量讲解其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.