欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

谁有高中学生数学研究性学习设计方案啊?

廉士重名
达名
我也想要啊,

如何开展好高中数学研究性学习

灵府
怀让
研究性学习(inquiry learning)是指学生在教师指导下,以类似科学研究的方法,从学习生活和社会生活中选择并确定专题,积极主动地获取知识,应用知识,解决问题的学习活动。这种学习活动的核心是改变学生的学习方式,强调自主学习、合作学习。数学教学大纲中对研究性学习提出了以下教学目标:(1)学会提出问题和明确探究方向;(2)体验教学活动的过程;(3)培养创新合作精神和应用能力;(4)以书面材料、口头报告,墙报等形成反映研究性成果,学会交流。这就要求我们对研究性学习的教学不同于传统知识的教学。根据高中新课程计划(试验修改稿),数学大纲要求,高中数学教学中将有1/6左右的教学时间用于开展研究性学习。这对教师的教学能力提出了更高的要求。教师本身是否具有进行研究性学习的能力,怎样对学生进行研究性学习的指导,实现教学行为方式的重大转变,需要有一个较长的适应过程。本文试图从高中数学教学的角度,谈谈个人开展研究性学习的一些实践与认识。以期为尽快实现研究性学习教学从理念到操作的转化抛砖引玉。一、研究性学习教学案例分析、介绍:(1)提出问题往往比解决问题更重要。教师首先要根据教学目标,寻找与教学内容相关的,可以激发学生兴趣的材料,创设出特定的情境,向学生提出要研究的领域,引导学生发现并提出需要探究的问题。爱因斯坦曾说过:“提出一个问题往往比解决一个问题更重要,因为解决问题也许仅仅是一个数学上的技能而已,而提出新的问题,新的可能性,从新的角度去看待旧的问题都需要创造性的想象力”,因此,提出问题是研究性学习要培养的主要能力之一。案例一,“一个等差数列的性质”的教学如果 成等差数列,则有即 …………(1)在讲过这一性质后,我要求同学们推广上述命题(设计、提出问题,并讨论解决办法)。下面摘录同学在研究性学习教学中提出的问题,、结论及一些思考。问题一,如果 成等差数列,依照(1)式能得到什么结论?即 =0…………(2)问题二,如果 成等差数列,能得到什么结论?即 …………(3)问题三,如果 成等差数列,能得到什么结论?即 时,…………(4)问题五,如何证明上述结论,将上述命题的条件与结论互换是否可行?到此,同学们采取研究方法仍然是特殊到一般的方法,但同学们很快发现当 时,上述反命题显然成立,当 时,上述反命题就不成立了,如1,2,4,7满足 ,但这此数显然不成等差数列。那是否研究到此结束了呢?问题六,同学很快就发现当 时, 可以得出 ,这就提示给我们,如果要使数列 成等差只需再添一个条件, =0,从而 成等差数列就需添两个条件……这样,同学们又估计到了它的一个反命题:成立,则 成等差数列………………(5)问题七,利用数学归纳法证明上述命题。在这样的研究性学习的教学过程中,学生们体验到了不断提出问题,解决问题所尝到的成功的喜悦。能提出需要探究的问题,在这里显然比找到答案更为重要。其实很多规律就蕴藏在我们平时教学之中,关键是我们的教师是否能让学生引起足够的重视,并引导学生发现与提出问题。(2)让学生积极参与,体验合作在研究性学习教学过程中,教师应创设让学生充分参与的情景,实现有意义的自主学习。一方面要给予学生自主学习的时间,让学生有足够的时间去探索、思考、交流。另一方面,教师要鼓励学生质疑问题,欢迎学生争辩、发表独立见解,确保学生全程参与,全方位参与。从这层意义上讲,研究性学生即要培养学生参与意识,学会合作交流。案例二,一道例题引发的研究已知 是周期函数,且周期为2,等式 对一切 均成立,求证 为偶函数。这是高一理科班函数复习时的一道例题。这道例题很普通,但内涵却很丰富,颇有研究价值。例题教学后,把学生分成5人一组,要求对这个问题进行多方位的研究,然后交流研究成果(老师提示:研究条件与结论之间关系;从图像的角度进行研究;猜测具有怎样的性质,函数是周期函数;对奇函数、偶函数的定义再作推广;通过研究得到什么启示等)。下面将各小组开展研究性学习活动后,各小组交流情况整理如下:[小组I研究结论]两个条件和一个结论这三者中的任何两者都可以推证出第三者。[小组II研究结论]由 为偶函数,则对称轴方程为对一切 成立,对称轴方程得出下列猜想并可证明:(1)若一个函数的图像有两条不同对称轴,这个函数是周期函数。(2)若一个函数的图像有两个不同对称中心,这个函数是周期函数。(3)若一个函数的图像有一个对称中心和一条对称轴,则这个函数是周期函数。[小组III研究结论]对函数 存在常数 ,使函数在定义域内任意 ,若都有 成立,则 为偶函数,若都有 成立,则 为奇函数。[小组IV研究结论]通过研究得出启示一,函数性质,如奇偶性,周期性与图象对称性是密切相关的;启示二,数形结合在发现问题,研究问题和解决问题中起着极为重要的桥梁作用。(3)发展应用数学知识解决实际问题,使数学回归到生活中去。研究性学习教学实施过程中应特别注意理论与实际生活的联系,学以致用,重在知识技能的应用,是研究性学习的很重要特征之一,通过研究有利于引导学生关注社会、关注自然,培养学生社会责任心和使命感,形成积极的人生态度。这在以往传统的教学课上是无法得到的。案例三,建立函数关系,解决实际问题函数的本质是变量与变量之间的对应关系,它反映事物运动变化过程中的内在联系,不少实际问题都可以抽象概括成函数表达式。即建上一个函数模型,从而简捷、准确地找到合理的答案。然而,由于本质上的差异,反映变量之间的依赖关系的函数模型呈现各种不同的面貌,这给我们的学生深入社会,利用数学知识解决实际问题提供可研究性学习的基础。为激发学生的学习兴趣,我布置了一个作业,“调查家庭生活中数学素材,从建立函数模型角度,为自己家庭解决实际问题”,一星期后,学生收集的资料五花八门,经分组整理,学生提出了各种各样的研究问题。如家庭生活中的分期付款问题(购房、买车等),知识售价、月利息、每月还款数,需多少时间还清,每次还款多少最合算;家庭装修问题;合理设计家庭开支问题;股票投资问题;家庭养殖业问题等等。老师把学生收集的素材分类,合并、提出修改意见后,分小组确定研究方向。经小组研究,总结出了许多解决实际问题的函数模型,如代数函数模型,指数函数模型,线性规划模型,盈亏平衡模型,投入产出模型等。解决实际问题的过程是学生体验研究性学习教学活动的过程,问题解决(无论是有答案、无答案,还是暂时无答案)都会使学生兴奋、投入,更重要的是,研究性学习的整个过程,自始自终学生都是研究者,培养了学生科学的态度,发展学生对家庭、对社会责任心,让同学在实践研究中获得直接经验。二、研究性学习教学基本框架及思考。1、研究性学习教学与传统数学教学比较,其最大区别在于传统课程有市统编教材,有较为成熟的实施教学方法、手段、评价体系,而研究性学习教学很多内容还是一块未开发的“自留地”,相对自由度较大,是教师自主的开发。根据新课程计划对研究性学习教学提出的目标,结合本人教学实践,我认为研究性学习教学的主要特点是:以发展探究思维为目标,以学科基本结构为内容,以再发现为学习方法。应强调(1)学生是“发现者”,在教师指导下,激发学生对数学学科本身的兴趣,通过自主探索,实践活动,去发现规律。(2)教师要为学生创设一个自主的学习环境,在教师指导下,将启发探究、评价、总结有机结合。下面让我们试图勾勒一下研究性学习的基本框架(如表所示)过程 内容 目的 操作问题情境阶段 确定课题 运用学生原有的知识和经验,选择有能力进行探索的问题 启发学生在已有一些知识的基础上,提出自己感兴趣的课程,确定对课题的探讨步骤及研究方案实践体验阶段 实证收集 了解和学习收集资料的方法,学会观察和检索 引学学生深入实际,围绕问题,引经据典,旁征博引,收集数据与事实依据进行分析 从各种信息中归纳出解决问题的重要思路,学会筛选和判断 要求学生对采集的事实及数据进行去粗取精、去伪存真的分析,对课题、议题作出“是什么”及“为什么”的初步解释表达交流阶段 初步交流 认真吸取他人意见和建议,不断补充和完善 初步研究成果在小组内或同学中充分交流得到结果 完成课题研究,通过深层次的思考,得到知识结论的体验 形成书面材料和口头报告,以辩论会、研讨会、展板、墙报、电子课件、网页等方式表达,进行相互交流和研讨2、研究性学习的教学大都采用课内研讨型。让学生经历不同背景之中,去发现问题,实施解决问题的方法,检验、论证及交流所获得的结论。也就是让学生自己思考研讨,怎么做、做什么,而不是让学生接受老师思考的现成的结论。它是一种积极的学习过程。研究性学习的教学内容,要能够引起全体学生的主动思考,引起同学(或与老师)之间交流。因此,研究的问题应当具有不同的层次性,要使得绝大部分学生都能够思考它,并且都有思考的空间。同时应允许结果的多元性,在可能的前提下,要使得不同的学生都能表达自己对问题的理解及见解的机会。3、研究性学习教学对学生的要求与评价。学生的发展是课程实施的出发点和归宿。课程实施应当着眼于学生全面素质的提高,为学生健合人格的形成以及能力、知识诸方面的学习与发展创造条件,研究性学习教学要特别重视对学生综合能力的培养:(1)要有敏锐的观察与思考能力;(2)要有搜集与积累资料的能力;(3)要有综合运用各科知识解决实际问题的能力;(4)要有一定的人际交往能力和合作精神。研究性学习教学中,学生各种活动中获得的不仅仅是知识,更是一种学习品质、能力、从而为他们的终身学习、长远发展奠定坚实的基础。由于研究地点、请教对像、研究小组的不同,对学生参与研究性学习的评价不可能有统一标准,教师应以肯定为主,保护学生参与积极性。应从(1)学生参与研究性学习活动态度情况;(2)学生在研究性学习活动中获得体验情况;(3)学生创新精神、社会实践能力发展情况;(4)交流合作情况等综合起来加以评价。4、研究性学习教学对教师的要求:在研究性学习教学中,教师是组织者、参与者和指导者。教师在教学目标的设计、教学活动的组织、现代化教育技术的运用等方面都要有利于每一个学生的发展。教师的教学是富有创造性的活动,每一位教师都有责任爱护和培养学生的探索精神、创新精神,营造崇尚真知、追求真理的氛围,促进学生自主学习,独立思考,为学生禀赋和潜能自由、充分地发展创造宽松的环境。实施研究性学习教学,培养学生的创新能力,关键在于必须有创造型的高素质教师。他们必须具备:(1)超前的教育观念;(2)快速接受新知识的能力;(3)高超的教学技能:①能充分发挥学生的全体作用的能力;②能熟练使用现代教学手段的能力;③娴熟的德育技能;(4)具有开拓创新精神和较强的科研技能。

高中数学如何实施研究性学习论文

十年九潦
卖油郎
研究性学习是学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究,并在研究过程中主动地获取知识、应用知识、解决问题的学习活动。 数学研究性学习方式作为一种新型的体现素质教育思想和要求的学习方式,应该贯穿在整个数学教育的所有活动中。那么,如何在高中数学课中开展数学研究性学习呢? 一、在日常的课堂教学中渗透研究性学习 求知欲是人们思考研究问题的内在动力,学生的求知欲越高,他的主动探索精神越强,就能主动积极进行思维,去寻找问题的答案。我们教师在教学中可采用引趣、激疑、悬念、讨论等多种途径,活跃课堂气氛,调动学生的学习热情和求知欲望,以帮助学生走出思维低谷。在讲授新课时,我们可根据课题创设问题情境,让学生产生悬念,急于要了解问题的结果,而使学生求知欲望大增。在遵循教学规律的基础上,采用生动活泼,富有启发、探索、创新的教学方法,充分激发学生的求知欲,培养学生的学习兴趣,为开展数学研究性学习的活动铺垫了基础。 数学研究性学习的过程是围绕着一个需要解决的数学问题而展开,经过学生直接参与研究,并最终实现问题解决而结束。学生学习数学的过程本身就是一个问题解决的过程。当学生学习一章新的知识、乃至一个新的定理和公式时,对学生来说,就是面临一个新问题。事实上,课本中,不少定理、公式的证明、推导本身就是一节数学研究性学习的好材料。比如,三角函数中,正弦、余弦诱导公式的推导;直线的倾斜角和斜率的研究;直线与抛物线的位置关系;等等。 以某一数学定理或公设为依据,可以设计适当的问题情景,让学生进行探究,通过自己的努力去发现一般规律,体验研究的乐趣。 二、在社会实践中渗透研究性学习 在数学研究性学习中,社会实践是重要的获取信息和研究素材的渠道,学生通过对事物的观察、了解并亲身参与取得了第一手资料,可以用所学的数学知识予以解决。 研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及社会发展密切相关的重大问题。要引导学生关注现实生活,亲身参与社会实践性活动。同时研究性学习的设计与实施应为学生参与社会实践活动提供条件和可能。 对于高中学生而言,要开展研究性学习,必须培养他们的实践能力。具体说来,主要包括有以下几个方面能力:发现问题、提出问题、分析问题和解决问题的能力;动手操作的能力;参加社会活动的能力。例如让学生尝试研究”银行存款利息和利税的调查 “:先让学生制定调查研究专题,从教科书、课外阅读书以及网络中查找有关银行存款利息和利税的内容,由学生自己根据实际需要,分组到建设银行、农业银行、农村信用社、国税、地税等相关部门进行原始数据的搜集,通过对原始数据的分析、整理,建立一个数学模型。在研究过程中,学生的积极性以及创新能力得到充分展示,使他们发现研究数学的乐趣,也享受到成功的喜悦。 三、在研究性学习中,教师要把握指导的度 研究性学习强调学生的主体作用,同时,也重视教师的指导作用。在研究性学习实施过程中,教师应把学生作为学习探究和解决问题的主体,并注意转变自己的指导方式。 研究性学习是学生在教师指导下的自主性、探索性学习活动,学生在学习中通过亲身实践获取直接经验,养成科学精神和科学态度,掌握基本的科学方法,进而提高综合素质和能力。作为这一活动的组织者和指导者的教师,在指导学生进行研究性学习过程中,既不可以按已有的教学模式包办代替学生的自主学习,也不能放任自流,不闻不问。要达到研究性学习的最终目的,教师的指导必须把握一个度。 由于研究性学习是学生在教师的指导下,从自然、社会和生活中选择和确定专题进行研究,并在研究过程中主动地获取知识、应用知识、解决问题的学习活动。而社会生产、生活以及学习中存在的需要解决的问题是多种多样的。不同类型的问题适宜用不同的方法和手段解决,换一句话说,不同类型的问题有不同的解决模式或者叫研究模式。因此,在进行研究性学习的初始阶段,就应该让他们熟悉和掌握尽可能多的研究模式,如我们要让学生熟悉,观察法,实验法,调查法和文献资料查阅法是科学研究最基本的方法,同时要让他们知道,什么样的课题适合什么样的方法。在开展研究性学习的过程中,指导教师是学生学习的参与者、指导者、组织者、促进者以及合作者,也就是说,教师应以平等身份主动参与学生的课题研究,通过与学生交流发表自己的意见,与学生相互学习,共同进步;教师应指导学生的研究思路、研究方法;教师应作好课题研究的组织协调工作,为学生的学习活动创造一个良好的环境,帮助学生克服困难,树立信心。黑笔填写,字迹尽量工整,不要涂抹过多,

数学研究性学习课题 高中

宫子
茅趸王
  “高中数学课程标准”正在积极、紧张的讨论和制订过程中,为了更广泛地了解社会各主要行业对高中数学课程和内容的需求,以便为“标准”的制订提供依据,我们在大学的理、工、文、农(含林医)、经济等专业和社会生活中理、工、文、农(含林医)、经济等行业中选择了有代表性的方向进行了调查、研究,现将有关结论综述如下,本次调查的其它结论见附录三、附录四、附录五、附录六、附录七。  一、调查的对象、内容和调查方式。  本次调查,我们选取了理科的物理、化学、计算机,工科的工程、机械、电工、无线电、文科的文学、艺术、历史、政治,农科的农业、林业、渔业、地理,以及经济学等专业作为主要调查对象。调查内容见附录一。调查方式采用问卷调查、走访提问、资料搜集等形式进行。  二、调查结论。  1.对数学的认识.  调查结果显示,数学在现代社会生产、生活中各个方面的应用越来越广泛,数学已经渗透到各行各业,各个专业方向。从卫星到核电站,从天气预报到家居生活,高技术的高精度、高速度、高自动、高质量、高效率等特点,无不是通过数学模型和数学方法并借助计算机的控制来实现的。产品、工程的设计与制造,产品的质量控制,经济和科技中的预测和管理,信息处理,资源开发和环境保护,经济决策等,无不需要数学的应用。另外,数学文化、数学的思想方法,也处处影响人们的生产和生活。  2.对现行高中数学教学内容使用情况的调查。  本次调查把现行高中数学教材(必修本)和原二省一市,现十省市使用的高中数学教材的15个部分内容分为经常用到、有时用到、偶尔用到和不用等四个方面进行调查(见附录一)。调查结果如下(各个方面的意见不一致,大致统计)。  经常用到:集合与简易逻辑,函数的解析式、图象,幂函数,指数函数,不等式的性质,解一元二次不等式,不等式的证明,解任意三角形,数列的通项公式,等差数列,等比数列,曲线与方程,直线方程,二元一次不等式的图象解法,简单线性规划问题,平面图形直观图的画法,加法原理,乘法原理,排列及排列数公式,组合及组合数公式,概率的意义,等可能事件的概率,互斥事件有一个发生的概率,独立重复试验发生的概率的,离散型随机变量分布列、期望值、方差,抽样方法,正态分布,线性回归,数列的极限,函数的极限,函数的连续性,导数的意义,初等函数的求导,函数的最大与最小值,求简单函数的不定积分,图形的面积计算,图形的体积。  有时用到:映射, 反函数,指数函数 ,对数函数, 数学归纳法, 平面向量的运算,平面向量的坐标表示,平面向量的数量积, 三角函数的诱导公式,三角函数的图象和性质,圆的方程,抛物线及其标准方程,平面及其基本性质,空间向量及其运算,用空间向量处理几何问题,总体分布的估计,复合函数的求导,微分的运算,利用导数研究函数的性质,求简单函数的定积分,微积分基本公式,积分的其它应用,解指数不等式,复数的向量表示。  偶尔用到:解无理不等式,解对数不等式,直线与平面的位置关系,多面体,棱柱,球, 椭圆极其标准方程,双曲线及其标准方程,椭圆、双曲线、抛物线的简单几何性质, 二项式定理,复数的运算。  基本不用:平面与平面的位置关系,异面直线, 三角函数的和差化积与积化和差,棱锥,复数的三角形式运算。  3.对是否可以列入新高中数学课程内容的调查。  本次调查列出24个知识项分为可以与不可以两个方面进行调查(见附录一),结果如下(各个方向的意见不一致,大致统计)。  认为可以列入的有:估算, 算法,向量与变换,行列式,矩阵的代数运算(以二维为主),逻辑量词,离散数学初步,数列的递推,条件概率,概率密度,连续型随机变量的分布列、期望值与方差,区间估计,相关系数,二项分布,探究性问题,用图形计算器解决问题,用计算机探究问题,数学建模。  认为不可以列入的有:迭代法解方程, 矩阵与几何变换,复数的指数形式,复数与三角变换,回归函数,复合函数的积分,分步积分。  对于本次调查的其他部分内容,如应重视哪能数学思想方法,应强调培养哪些数学能力,现行高中教材中“立体几何”“解析几何”“三角函数”等内容的功能和意义如何等项的调查正在进行之中。另外,根据附录一、二在网上调查也正在进行。参考资料:http://www.cbe21.com/subject/maths/printer.php?article_id=1984

高中数学研究性学习论文怎么写啊,第一次写,不知道如何下手。

野心勃勃
睹道之人
美国教育学家布卢姆在其“目标分类学”和“掌握学习策略”的理论中指出,以目标为核心,运用评价手段,构成教学过程三要素。教学目标是教学活动的指南,教学评价的依据。布卢姆认为学生学业成绩的差异与教学方法及教学内容呈现顺序有关。所以教师如何合理安排内容,制订符合学生认知规律的实施程序,便尤为重要。同时,思维科学表明,人类思维是一个整体性的活动过程,又是一个系统结构,而且是一种有层次的系统结构。不同的思维表现为不同的思维层次,思维“是由模糊→清晰→高一层次模糊→高一层次清晰…螺旋上升的”。故教师在设计教学过程时,既要适合学生现有的思维水平,又要考虑为下一个思维阶段的发展奠定基础。以下是关于二面角的平面角的目标层次(思维)教学,望与同行共勉。目标层次教学过程  层次1  知识目标:理解二面角的平面角的概念,寻找“三要素”,模拟“三步曲”。  能力目标:通过二面角的平面角的空间模型,培养空间想象能力。  情感目标:建立学习数学的自信心,培养学习数学的兴趣。  教学难点:由于取点P的任意性引起作图的不确定,容易造成学生思维不稳定性。就这点而言,需要教师通过具体模型,进行比较、辨别,使解题与作图过程简洁,自然。  展示过程:  (1)展示空间模型,强化“三要素”(二面α,β,一棱l)。(图1)             (图2)  (2)依托空间模型,模拟“三步曲”(二垂直、一连接)。  第1步:在面α内任取一点P,作P,B⊥面β,点B为垂足。  第2步:在面β内作BA⊥l,交l于点A。  第3步:连接A、P,此时∠PAB为二面角α-l-β的平面角(其中图2二面角的平面角为∠PBA的补角)。  举例测评:  例1 已知三棱锥V-ABC(如图3)。作出:①二面角V-AB-C的平面角;②二面角B-AV-C的平面角;③二面角A-VB-C的平面角。(图3)          (图4)  反馈评注:  (1)显然对数学的恐惧心理,使得部分学生在解题1之前整整捉摸了5、6分钟,让他们为难的是不知点V的射影应落在何处。在再三鼓励与督促下,终于作图如4。老师及时强化三要素,定式三步曲,目的是使其在思维上造成一种定式、定图,学会模仿,形成一个具体的感性认识和一个具体思维框架。此后再找二面角V-CB-A的平面角,显然就容易多了。  (2)面对问2,图形的经过翻转,部分学生又显得措手无策了。这暴露了他们空间想象能力的缺乏,平时忽视对概念的本质的正确认识和深层次理解,同时思维也缺乏广阔性与灵活性。如何让他们有空间立体的概念?我用铅丝制作了一个立体模型,在注重情感交流的同时,更注重了让他们有一个“观察,模拟,表达,总结”的过程,去伪存真,把握问题的实质。在完成问题2之后,问题3的解决似乎并不是很艰难的。  层次2  让学生原有认知结构中相应的旧知识与所学新知识产生同化和顺应,促进认知结构的不断更新。要从学生已掌握的知识水平基础上创设最近发展区,并促进学生知识的提高和水平的发展。  知识目标:掌握二面角平面角的作法(巧练“三元素”,定式“三步曲”)。  能力目标:培养空间想象能力与逻辑推理能力,尤其是批判性思维能力。  情感目标:增强学生学习的自信心,体验成功的喜悦。  教学难点:对于三步曲中的第一步曲:过点作面的垂线,分成三个层次:  (1)直接找(从已有的边上找,如例2);  (2)面内作(通常作法,如例3);  (3)空间作(转化为面作,如例2)。  举例展示:  例2 在正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱长为2a,如图5。求二面角A-B1C-B的平面角。  分析 思考过点A作还是过点B作垂线。  (1)发现AB⊥面BCB1:(找到垂线)  (2)过点B作棱B1C的垂线交B1C于点E;  (3)连点AE。即∠AEB就是二面角A-B1C-B的平面角。(图5)            (图6)  例3 如图6,直面三棱柱ABC-A1B1C1,底面为直角三角形,∠ABC=90°,棱长AA1=6,AB=4,BC=3,求面A1BC1与面ACC1A1的二面角。  分析 过点B作垂线。  (1)在面ABC内过点B作BE⊥AC,交AC于点E;  (2)过E作EF⊥A1C1,交A1C1于F;  (3)连接BF,即得∠EFB为所求二面角B-A1C1-A的平面角。  例2中如过点B作面ACB1的垂线就面临着在空间过点作面垂线问题了,应选作一个垂面,在面内作垂线。  分析:过点B作BE⊥B1C,连AE,先证B1C⊥面ABE,易得面ABE⊥AB1C,找到垂面,在△ABE中作BF⊥AE得BF⊥面AB1C,易证∠AEB就是二面角A-B1C-B的平面角。  反馈评注:  (1)对于图5求二面角A-B1C-B的平面角来讲,过点B显然过于繁杂,故仅作为一种解题的思路来介绍。但事实上,经过例2过点A还是过点B的对比练习,使学生对于取点做垂线问题有了更深的理解。让学生自己意识到在平时解题过程中,优化思维、优化解法的重要性。培养学生认真审题的习惯,会利用题中的已知、求证关系,进行分析、比较。在平时教学过程中要求学生不要盲目做题,强调思维过程的教学,加强数学思想方法的培养。这样才有利于提高学生进行正确分析比较,分清事物本质,使学生能够合理选择思维的起点,增强思维的灵活性。  (2)在层次2的教学中更注重数学交流的过程,让学生袒露自己的想法与思路,用自己的语言阐述数学思维的过程。不仅有利于学生增强学习数学的兴趣,更有利于学生找到问题的所在,发现不良的学习方法和思维角度。同时数学交流有利于培养学生的责任感,与人分享数学学习的经验,诚信合作,互相帮助。  层次3  知识目标:熟练掌握二面角平面角的作法,会灵活的运用。  能力目标:提高分析问题能力,培养辨证思维能力及思维品质,激发思维的创造性。  情感目标:帮助学生养成多角度,多方向进行思考的习惯。  教学难点:对于三步曲中的第二步:过垂足作棱的垂线,分成三个层次:  (1)垂足在线段上(如例3);  (2)垂足在线段延长线上(如例4);  (3)无棱(添辅助线(如例5)。举例展示:  例4 如图7,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD=3。  (1)求证:BD⊥面PAD;  (2)若PD与底面ABCD成60°的角,求二面角P-BC-A的大小。  分析 (1)略。(2)如图7,由BD⊥面PAD,得面PAD⊥面ABCD,过点P在面PAD中作PE⊥AD,交AD于E,可得PE⊥面ABCD,过E在面ABCD内作BC的垂线交CB延长线于F。易证∠PFE为二面角P-BC-A的平面角。(图7)            (图8)  例5 如图8,正三棱柱ABC-A1B1C1,其中E为CC1的中点,2BD=BC=EC,且△ABC的面积为a2。求面ADE与底面ABC的二面角的平面角。  分析 由于EC⊥面ABC,难点在于二面的交线(即棱)。延长ED、CB交于点F,连AF,可知AF为二面的棱。在△AFC中,可证∠FAC=90°,易得∠EAC就是二面角的平面角。  反馈评注:  (1)层次3的例题设计是在学生已熟练掌握层次2的基础上,且遵循知识的认识规律,恪守循序渐进的原则,充分体现层次教学,同时让学生参与揭示知识发生的全过程,让学生参与例题分析的全过程,让学生参与数学思想方法总结的全过程,体现学生的主体性。(目标层次设计如下表)目标 层次1 层次2 层次3 知识目标 理解概念,模拟过程 掌握方法,巧练定式 熟练掌握,灵活运用 能力目标 空间想象能力 判断性思维能力 创造性思维能力 情感目标 建立自信心 体验成功的喜悦 数学精神与品质 数学交流 鼓励、尝试 交流、协作 自主探索  (2)同时层次(思维)教学是将知识按层次进行教学,实质就是将知识条理化,思维层次化。所以每一个学生必须将知识予以归纳条理化,来调整自己的认知结构。  (知识条理如下表)  三步曲垂直(点到面)直接找面内作空间化(转化)垂直(点到棱)在线段上在线段的延长线上添辅助线(无棱)连接 点到点(垂足)  (3)对于例5,在解题过程中如取DB为垂线,势必要过点B作BH⊥AF,交AF于点H,连HD,∠DHB也是二面角的平面角。当然也可以用射影定理cosθ=S△ABC/S△ADE来求。但在解题过程中反映出学生思路狭窄,缺乏良好的思维品质,对学生批判性思维能力培养不够。出现这种情况的主要原因是教师满堂灌,搞一言堂,没有时间留给学生思考质疑,搞题海战术,没有真正做到问题教学,思维过程教学,没有发挥一题多解的作用。素质教育势在必行,如何培养学生思维能力将是我们一线教师所孜孜以求的。

浅谈如何在高中数学教学中开展研究性学习

北冥有鱼
立之本原
数学是思维的体操,数学知识抽象、逻辑性强,不容易学好,尤其是高中数学知识,学生很难学好。研究性学习是新课程倡导的教学模式,目的是让学生作为学习的主体,主动去研究数学知识,在学习中促进学生学会自学,提高学习效率。就对如何在高中数学教学中开展研究性学习进行相关探讨。高中数学是高中阶段重要的基础学科,但是高中数学知识抽象难懂、逻辑性强,学生很难掌握。研究性学习是新型的教学模式,研究性学习就是要让学生主动地参与课程的研究过程,使学生亲身体验学习知识的过程,培养学生的自学能力与探索发现意识,提高学习效率。一、研究性学习的特点1.开放性我们进行研究性学习的内容不是固定不变的,而是来源于学生平常的生活与社会生活,是为了解决在生活中的常见问题或社会问题。这种教学模式不是固定的某学科的知识,也可能是多学科综合、交叉的知识,具有开放性。2.探究性研究性学习顾名思义肯定是有较强的探究性的,在研究性学习的过程中,学生学习知识是在教师的指导下,但并非是教师主导的,是让学生自主对研究课题进行确定,改变了以往传统的教学模式,学生成了学习的主人,学生可以发挥自己的才能去主动探究,相互交流、学习,最终得出结论。3.实践性数学知识不是死板的书本知识,它是与生活有紧密联系的,因此,研究性学习强调实践性,在学习知识的过程中,我们可以与实际生活相联系,可以融入环境问题、现代科技问题等,引导学生关注生活,亲身参与实践活动,在实践活动中学习知识。二、研究性学习的目标研究性学习强调对所学知识、技能的实际应用,重视学生学习的过程和学生的实践与体验。我们要达到的目标为:(1)使学生获取亲身参与研究探索的体验。(2)促进学生发现问题与解决问题的能力。(3)培养学生收集信息与利用信息的能力。(4)使学生在研究性学习中学会分享与互相合作。(5)培养学生的科学态度与科学精神。(6)培养学生对社会的责任心和使命感。三、高中数学研究性学习1.对数学研究性学习的认识对高中数学的研究性学习是学习的一个有机组成部分,是学生提升主动学习能力与实践能力的有效途径。学生在研究性学习中,思想得到了解放,思维能力得到了锻炼,能为学生营造一个勇于探索争论与相互学习鼓励的良好气氛,使学生在学到知识的同时,也提高了综合学习能力。2.进行数学研究性学习的途径(1)在课堂教学中渗透研究性学习高中数学教师可在教学中应用激趣、激疑、悬念、讨论等多种途径,活跃课堂气氛,提高学生的学习热情与求知欲望,帮助学生走出思维低谷。实践证明,在遵循教学规律的基础上应用生动活泼、丰富多彩的教学模式,能够达到使学生成为学习主人的目的,学生的学习兴趣得到了激发,学生的求知欲望大增,提高了课堂的教学效率。(2)数学开放题与数学研究性学习数学开放题能够显著地凸显数学的研究性学习,解答疑难的过程就是探究的过程,数学开放题体现了数学问题的形成过程,体现解答对象的实际状态,学生在解答数学开放题时,必须综合分析、综合探索,这样有利于对学生思维的灵活性的激发,使学生体会成功,从而爱上数学。(3)数学研究性学习课题的选择开展数学研究性学习要恰当地选择学习课题,在选择课题的时候,我们要充分考虑到学生的自主活动与合作活动。研究性学习课题应该是学生学习的基础数学知识,然后与实际的生活和生产相结合。可以使师生自拟课题,这样可以培养学生的独立思考能力与综合分析能力,有利于学习效率的提高。(4)在数学研究性学习中如何编制开放题不管是改造陈题,还是自创新题,编制开放性题目要围绕开放题的目的而进行,开放题要根据实际情况的变化而做出改变,开放题是补充基础题目的,应有利于促进学生综合素质的发展。编制开放题要以基础知识为基础,切入点是以知识网络的交叉点为入口。依据某一数学定理或者是公式对开放题进行编制,以一定的封闭题开发出开放题,为体现或重现某一数学研究方法而编制开放题,编制开放题要根据实际情况进行。(5)数学研究性学习与数学教学①研究性学习在高中的定位它是面对整个高中数学教学的,面向的是全体学生,而不是少数的优秀生。研究性学习的目标是激发学生主动探索的积极性,培养学生的创新能力,为的是提升学生的综合能力。②研究性学习与数学教学的关系数学研究性学习与现有的数学学科教学之间,不是两个独立的事物,而是相互联系、相互促进的关系。总之,数学是思维的体操,数学知识抽象、逻辑性强,不容易学好,尤其是高中数学知识,学生很难掌握。研究性学习是新课程倡导的教学模式,目的是让学生作为学习的主体,主动去研究数学知识,在学习中促进学生学会自学,提高学习效率。本文对在高中数学教学中开展研究性学习进行了相关的探讨,数学研究性学习是面对整个高中数学教学的,面向的是全体学生,而不是少数的优秀生。研究性学习的目标是激发学生主动探索的积极性,培养学生的创新能力,为的是提升学生的综合能力。研究性学习强调对所学知识、技能的实际应用,重视学生学习的过程和学生的实践与体验。研究性学习能够激发学生主动探索的积极性,培养学生的创新能力,为的是提升学生的综合能力。在实际的教学中,教师要根据学生的实际情况,因人而异地应用研究性学习教学,从而促进学生学好数学。

高中数学研究性学习,课题是“生活中的数学”,希望学姐学姐们帮帮忙,我不知道该研究什么=-=

啊海军
杕杜
记得是星期六的一天早上,爸爸带我去看望爷爷奶奶,爷爷奶奶生活在农村,生活来源主要靠养鸭为生,平时爷爷奶奶就吃住在鸭场,我到了爷爷奶奶处,免不了要看鸭舍,喂鸭子。鸭场沿河沟而建,其余三面是栅栏,围成一个长方形。我向爷爷喂鸭场地为什么不建成正方形而建成长方形,我还对爷爷说,‘我们老师说过,栅栏的长度一样时,围成的正方形面积要比长方形的面积要大,’爷爷笑呵呵地对我讲,‘你说的情况与我们这个喂鸭场地的情况不一样,你看我的这个场地,一面利用水沟围,三面利用栅栏围,不是四面,’接下我天真地说,‘水沟长着呢,为什么不围更长一些呢,那样面积不就更大了吗?’爷爷说,‘这就不一定了,’爷爷说,‘萍萍呀,听说你们已经学过长方形和正方形的面积计算了,今天正好我来考考你,我这个喂鸭场地,三面栅栏共长40米,你想想看我们这个喂鸭场的面积最大可以围成多大呢?’ 带着问题,我陷入深深的思考中,我采用列举的方法,推想:假设宽1米,长是38米,面积就是38平方米;宽2米,长是36米,面积就是72平方米,逐步列举…宽10米,长20米,面积是200平方米;再往下逐步推算面积,面积又逐步减少,另外我又列举了其他的数加以证实看看有什么特点,我从中摸索了这样一个规律,象这样利用一边是河沟围成的长方形面积比正方形面积大,也不是长越长面积越大,而是长的长度是两条宽的和时面积最大。带着成功的喜悦,我跟爷爷说,‘爷爷呀,你考我的问题,我想了一下,不知道对不对,’爷爷让我讲讲看,我说这个喂鸭场地面积最大是200平方米。爷爷高兴地说,‘一点都不错,我孙女是好样的。’ 从这个实例中,我感受到,在实际生活中,只有合理地科学地利用资源,才能发挥最大的效益,从中我也感受到,数学会给人们带来智慧创造财富,可以说是,生活中处处包含着数学,生活中处处离不开数学。既然是学姐学姐们,那学长默默离去

如何在高中数学课堂中开展研究性学习

夢中劍
公子娇
①保证教学的科学性;②发掘教材的思想性,注意在教学中对学生进行品德教育;③要重视补充有价值的资料、事例或录像;④教师要不断提高自己的专业水平和思想修养。

急!求高中研究性学习课题报告 课题《环境规划与数学》

海之魂
如果你想要整篇文章都帮你找出来的话,那真的有点难,只能讲讲回答的方向。一、课题是如何提出来的:环境规划离不开数学,要规划就要经常运用要数学模型,而数学模型理所当然属于数学范畴。因此,我们要研究关于环境规划与数学的关系。二、课题的目的意义: 环境规划与数学的关系的研究更能让我们知道数学对环境规划的重要性,也促进我们对数学模型的学习及认识。三、活动规划: 1、小组成员进行研究前资料收集。 2、进行一些现场观测及人员访问。 3、小组成员根据自己的对课题的认识提出自己的看法 4、总结以上只是个人的一些看法,更重要的是楼主自己的观点及你们课题老师的任务要求。