欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

求高中数学研究性小课题一篇

推论
娜塔莉
高中数学研究性学习课题集锦 一、课本知识延伸型 1、空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的 各类问题。 2、整理求定义域的规则及类型(特别是复合函数的类型) 。 3、求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出 现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如 配方法、带余除法等) 。 4、 总结求函数值域的有关方法, 探索判别式法的一般情形——实根分布的条件用于求值域。 5、利用条件最值的几何背景进行命题演变,与命题分类。 6、回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层 函数的符号) ,我们称之为“给函数更衣” ,于是我们可以随心所欲地将方程(不等式)进行 演变。你能利用这一点编拟一些好题吗。 7、探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这 种方程的类型。 8、在原点有定义的奇函数,其隐含条件是 f(0)=0,试以这一事实编拟、演变命题。 9、把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一 事实数学化吗?若把轴对称改为中心对称又怎么结论? 10、对于含参数的方程(不等式) ,若已知解的情况确定参数的取值范围,我们通常用函数 思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 11、 改变含参数的方程 (不等式) 的主元与参数的地位进行命题的演变。 探索换主元的功能。 12、数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘, 试探它在解决三角问题中的数形结合功能。 13、整理三角代换的的类型,及其能解决的哪几类问题。 14、一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 15、三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化, 即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 16、一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑 其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法” ,试整 理常见的类型的补集法。 17、概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 18、观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 19、探求一些著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深 对不等式的理解。 20、整理常用的一些代换(三角代换、均值代换等) ,探索它在命题转化中的功能。 21、考虑均值不等式的变换,及改变之后的不等式的背景意义。 22、分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换, 将分母为多项式的转化为单项式。 23、关于数学知识在物理上的应用探索 24、对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两 点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题, 试研究解几中的各种公式逆用,以充实构造法证明。 25、我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的 行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 26、 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材, 如用点斜式而忽视斜 率存在,截距式而忽视截距为零等。 27、 利用角参数与距离参数的相互转化以实现命题的演变, 达到以点带面, 触类旁通的目的。 28、研究求轨迹问题中的坐标转移法与参数法的相互联系。 29、关于斜率为 1 的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题 策略。 30、解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲 线(包括其退化情形如两条相交线,平行线等)的圆化处理。 31、整理与焦半径有关的问题,并将之“纯代数化” ,进而研究其“纯代数解法” ,从中探索 新方法。 32、把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 33、在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想” , 扩大这思想在解几中的地位或功能。 34、与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种 方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 35、平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简 单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问 题进行升维处理。即把它转化为立几问世题加以解答。 36、用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中 的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 37、 作为降维处理的一个例子: 可考虑异面直线距离的几种转化, 如转化为线面距、 点线距、 面面距等。 38、异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观 点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 39、立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。 于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 40、等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们 所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的 相应方法探索之。 二、生活应用型(需要学生自己动手去有关部门搜集和整理原始资料) 1、银行存款利息和利税的调查 2、购房贷款决策问题 3、有关房子粉刷的预算 4、关于数学知识在物理上的应用探索 5、投资人寿保险和投资银行的分析比较 6、编程中的优化算法问题 7、余弦定理在日常生活中的应用 8、证券投资中的数学 9、环境规划与数学 10、如何计算一份试卷的难度与区分度 11、中国体育彩票中的数学问题 12、 “开放型题”及其思维对策 13、中国电脑福利彩票中的数学问题 14、城镇/农村饮食构成及优化设计 15、如何安置军事侦察卫星 16、如何存款最合算 17、哪家超市最便宜 18、数学中的黄金分割 29、通讯网络收费调查统计 20、数学中的最优化问题 21、水库的来水量如何计算 22、计算器对运算能力影响 23、统计铜陵市月降水量 24、出租车车费的合理定价 25、购房贷款决策问题 26、设计未来的中学数学课堂 27、电视机荧屏曲线的拟合函数的分析 28、用计算机软件编制数学游戏 29、制作一个数学的练习与检查反馈软件 30、制作较为复杂的数据统计表格与分析软件 31、制作一个中学生数学网站 32、如何计算一份试卷的难度与区分度 33、多媒体辅助教学在数学教学中的作用调查 34、零件供应站(最省问题) 35、拍照取景角最大问题 36、当地耕地而积的变化情况,预测今后的耕地而积 37、衣服的价格、质地、品牌,左右消费者观念多少? 38、如何提高数学课堂效率 39、数学的发展历史 40、“开放型题”及其思维对策 嘿嘿,我把我做过的研学课题和你说一下吧。多米诺骨牌的轨道设计

高中数学课题具体有哪些选择?有范例吗?

数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。采纳哦数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

高中数学研究性学习课题选题参考

黑巫术
类与不类
去百度文库,查看完整内容>内容来自用户:piamehom高中数学研究性学习课题选题参考 |[ 作者:叶挺彪    转贴自:数学百草园    点击数:949    文章录入:gottin ]|数学研究性学习课题  | ||数学研究性学习课题1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力

高一数学研究性课题

相非
岂不悲哉
如果你是想活跃气氛,我可以给你很多适合高一数学思维的题目,但是如果你要是和学的东西搭配我暂时想不出来,可以给你两个题目做参考 有8个钢球看上去一样(外形完全一样),其中有一个超重,现在我有一个天平,请问我如何只秤两次,把这个超重的钢球选出来(选自微软一招聘题) //考的思想有:分类思想 还有一个题目: 一个水杯里面有一杯水,满的,我每次喝一口喝水杯中水的一半,我们知道是喝不完的,杯子里面总是会有水。 (数学里面的谬论)一只小狗朝一个主人跑过去,我们这样设想,小狗要跑到他的主人身旁,首先要跑到他们距离的一半,当跑到这个主人一半距离的时候,小狗又要继续跑到他们俩距离的一半才能到主人面前,小狗要跑到主人身旁总是要跑到他们距离的一半才能达到目的....我们知道小狗是能跑到主人的身旁的,甚至还可能超过主人继续向前跑。 问题出来了,一杯水我们把杯底看成是一个参照点,而同样地,那个主人我们把他看成参照点,这样小狗和水杯中的水面可以看成是朝他们运动的,为什么会有不同的结果呢? 很容易理解的问题,其根本原因在哪儿呢?(这个问题是我前几天想出来的。没有答案的,学生踊跃发言记录下)到时给我留言哦。探究直线与圆的关系

高中数学研究性课题的制作

莫斯科

求有关高中生研究性学习的作文1000字左右!(有关数学方面的)

其入不距
互有
在新的高中数学课程课标中,明确提出高中数学课程应力求通过各种不同形式的自主学习和探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识与应用意识,这说明加强学生研究性学习已经引起了教育界的重视。那么在数学学习中怎样进行研究性学习呢? 问题的提出在“教师讲学生听、教师问学生答”的传统式课堂教学中,学生也许能“多、快、好、省”地获得一个个数学结论,得到一个像样的分数。然而,在这种单一被动的接受式学习模式中,学生的棱角被磨平,个性被抑制,缺失独立思考的精神和意识,会变的越来越机械和循规蹈矩。研究性学习作为一种富有挑战性的学习方式,不仅是专门设置的研究性学习课程学习活动的主要方式,而且可以渗透于各学科的课堂学习活动之中。把研究性学习引进高中教学课堂,学生学习从单纯的接受转向积极的情感体验和深层次的认知与参与,必然会促进学习方式的改进,促进包括高层次的思维在内的全面素质的提高。目前因为高考的压力,关于研究性学习的研究大都是理论色彩较浓,离教学实践很远,教师在教学中很难去真正研究并加以运用。笔者认为,研究性学习必须从专家走向教师,从理论走向实践,从宏观走向微观。 体验性高中数学课堂研究性学习注重过程体验性,即让学生置身于一定的问题情境之中去经历、感受和考察,最终加以认识和掌握。在这样的问题情境之中,学生运用已有的知识、技能和经验,进行有理有据的猜想和推论,并不断变换角度和背景予以重新审视和修正,通过这样的反复思辨,学生在自我否定与自我肯定中去伪存真、去粗取精,逐步探寻问题的实质,最终得出合理的结论。在这个过程中,学生看似仅获得直接的知识经验,实际上学生也同时获得了自身需求的满足、心理的平衡以及对数学的浓厚兴趣。交互性在研究性学习过程中,教师与学生处于对等地位,没有强弱高低之分,教师把学生置于主体地位,充分发挥自身的组织、引导、促进、激励功能,让学生带着自己的知识、经验、思考主动参与研究活动,实现师生互动和教学相长。 素质重构数学教学要充满诱惑力和吸引力,关键在于重构教材中的素材内容,使之具有现实性、趣味性和挑战性。因此,教师要把学生的知识、直接经验、生活世界当成重要的课程资源,努力探究那些发生在学生身边且暗含某种数学现象或数学规律的实际问题,以充分调动学生学习的积极性、主动性和创造性。结构重组传统观念由于侧重于数学知识的获得与数学技能的训练,因而在教学中呈现“例题——习题”式封闭循环的教学模式。教师在课堂教学中,应重构学习材料,注重从教材编排的结构方面对其进行重组和再加工,着力凸显“创设问题情景——现实问题数学化——问题解决与建模——应用与拓展”的逻辑结构,体现让学生“学数学研究数学”的价值取向,为学生的持续和谐发展创造有利条件。 创设情境、提出问题有问题,才会激起碰撞和交流,问题是认识活动的起点,也是研究活动的开始。任何问题都离不开一定的情境。在教学中,所谓创设问题情境就是在教学内容和学生求知心理之间制造一种“不协调”或“冲突”,将他们引入一种与问题有关的情境之中,使之形成问题意识,激发认识冲动。数学是从客观世界的数量关系与空间形式中抽象概括出来的,教师可以通过对数学学习内容采取背景化和丰富化的处理,引导学生调动已有的经验来理解数学,把常识提炼成数学,从而体会数学的趣味和作用。 提高时空、自主探讨教师的主要任务是:确定研究形式数学课堂研究性学习的形式主要有:①学生独立探究。每个学生根据自己的体验,以自己的思维方式自由地、开放地进行探究和发现,对研究的问题形成个性化的理解和表达。这样可以增强自主意识,培养学生的探究精神和创新意识。②分组或全班合作探究与交流。学生在独立探究的基础上,再进行合作或交流,可以满足学生自我表现的欲望,实现自我价值,同时可以进一步探究和整合教学资源,通过师生之间、同学之间的合作交流,可以使学生在交流中分享探究成果。 选择研究方法依据高中数学内容的不同特点,在教学中可以用到下列方法:实验调查。对与生活相近的内容可以要学生通过一定的数据调查,然后再分析总结,找出合理的答案,如分期付款问题。观察归纳。让学生从已有的知识和经验出发,通过整理、分类、观察、计算,从具体事例中归纳和发现事物的一般规律。通过这样的探索与发现、观察与分析、归纳与验证等一系列活动,使学生加强探寻规律的思想方法。

高中数学研究性学习,课题是“生活中的数学”,希望学姐学姐们帮帮忙,我不知道该研究什么=-=

万物虽多
丧己于物
记得是星期六的一天早上,爸爸带我去看望爷爷奶奶,爷爷奶奶生活在农村,生活来源主要靠养鸭为生,平时爷爷奶奶就吃住在鸭场,我到了爷爷奶奶处,免不了要看鸭舍,喂鸭子。鸭场沿河沟而建,其余三面是栅栏,围成一个长方形。我向爷爷喂鸭场地为什么不建成正方形而建成长方形,我还对爷爷说,‘我们老师说过,栅栏的长度一样时,围成的正方形面积要比长方形的面积要大,’爷爷笑呵呵地对我讲,‘你说的情况与我们这个喂鸭场地的情况不一样,你看我的这个场地,一面利用水沟围,三面利用栅栏围,不是四面,’接下我天真地说,‘水沟长着呢,为什么不围更长一些呢,那样面积不就更大了吗?’爷爷说,‘这就不一定了,’爷爷说,‘萍萍呀,听说你们已经学过长方形和正方形的面积计算了,今天正好我来考考你,我这个喂鸭场地,三面栅栏共长40米,你想想看我们这个喂鸭场的面积最大可以围成多大呢?’ 带着问题,我陷入深深的思考中,我采用列举的方法,推想:假设宽1米,长是38米,面积就是38平方米;宽2米,长是36米,面积就是72平方米,逐步列举…宽10米,长20米,面积是200平方米;再往下逐步推算面积,面积又逐步减少,另外我又列举了其他的数加以证实看看有什么特点,我从中摸索了这样一个规律,象这样利用一边是河沟围成的长方形面积比正方形面积大,也不是长越长面积越大,而是长的长度是两条宽的和时面积最大。带着成功的喜悦,我跟爷爷说,‘爷爷呀,你考我的问题,我想了一下,不知道对不对,’爷爷让我讲讲看,我说这个喂鸭场地面积最大是200平方米。爷爷高兴地说,‘一点都不错,我孙女是好样的。’ 从这个实例中,我感受到,在实际生活中,只有合理地科学地利用资源,才能发挥最大的效益,从中我也感受到,数学会给人们带来智慧创造财富,可以说是,生活中处处包含着数学,生活中处处离不开数学。既然是学姐学姐们,那学长默默离去

关于高一数学的研究性学习的解答

行露
指南针
楼主的数学一定很好吧,你提的几个问题都是很有研究性的,能够提的出有研究性的问题是学好数学的第一步.1,对于镜子里的像呈周期性的问题,你能联想到数学三角函数里的周期性问题,是把数学运用到生活中去的好例子,三角函数中的正旋函数的对称中心就是余旋函数的对称轴,反过来也适用,这说明正旋函数与余旋函数是可以互相转化的,这就要用到他的周期性问题.2数形结合确实是研究数学的好方法,具有直观性的特点,把数与形结合起来,常见在一元二次函数里面.3单位圆具有圆上任意一点到圆心的距离都相等的特点,圆上这点到横轴的线叫正旋线,到众轴的线叫余旋线,再看象限来定正负.可以把直角三角形的一些知识运用到里边去,对于比较在一个范围内正余旋的大小的临界点分析是很有帮助的.4对于化简求值的问题用的比较多,齐次式,正切化旋.5例如由sin(派/2-a)=cosa,sin(派/2+a)=cosa,cos(派/2-a)=sina,cos(a-派/2)=sina,cos(a+派/2)=-sina,sin(派/4+a)=sin(派/2-派/4+a)=cos(派/4-a)6比如说求得三边相等,那么三角相等并等于60度也就出来了.7运用均值不等式解题公式a+b>2根号ab,ab最好是定值,像tanacota之类的8三角转化为均值,就是把函数问题变位比较大小,反之亦然.9这种变换在高一上学期用的比较多,有些题变换主元能让题目边得比较简单,要根据题目来定.10.(1)作差,再看得数大于还是小于0,有时还需要对差进行分解公因式,或者再运用一些二次函数的知识一类的.(2)变形作差,性质和前一个一样的,只是要运用一些技巧,比如平方作差啦(3)作商,前提要是在两个都是正数,看商是大于或小于或等于1(4)平方作差,前提是两个都是正数.

如何在高中数学课中开展数学研究性学习

名色
驺虞
数学研究性学习方式作为一种新型的体现素质教育思想和要求的学习方式,应该贯穿在整个数学教育的所有活动中,在现行的数学教学过程中可以将数学研究性学习作为一种学习方式加以引入,以培养学生对数学的探究性学习能力、实践能力、创造能力和创新精神。