欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

求高中数学研究课题

此四患也
铳墓
  高中数学研究性学习课题选题参考  作者:德化一中数学组  数学研究性学习课题  1、银行存款利息和利税的调查  2、气象学中的数学应用问题  3、如何开发解题智慧  4、多面体欧拉定理的发现  5、购房贷款决策问题  6、有关房子粉刷的预算  7、日常生活中的悖论问题  8、关于数学知识在物理上的应用探索  9、投资人寿保险和投资银行的分析比较  10、黄金数的广泛应用  11、编程中的优化算法问题  12、余弦定理在日常生活中的应用  13、证券投资中的数学  14、环境规划与数学  15、如何计算一份试卷的难度与区分度  16、数学的发展历史  17、以“养老金”问题谈起  18、中国体育彩票中的数学问题  19、“开放型题”及其思维对策  20、解答应用题的思维方法  21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类  22、高中数学的学习活动——解题后的反思——开发解题智慧  23、中国电脑福利彩票中的数学问题  24、各镇中学生生活情况  25、城镇/农村饮食构成及优化设计  26、如何安置军事侦察卫星  27、给人与人的关系(友情)评分  28、丈量成功大厦  29、寻找人的情绪变化规律  30、如何存款最合算  31、哪家超市最便宜  32、数学中的黄金分割  33、通讯网络收费调查统计  34、数学中的最优化问题  35、水库的来水量如何计算  36、计算器对运算能力影响  37、数学灵感的培养  38、如何提高数学课堂效率  39、二次函数图象特点应用  40、统计月降水量  41、如何合理抽税  42、市区车辆构成  43、出租车车费的合理定价  44、衣服的价格、质地、品牌,左右消费者观念多少?  45、购房贷款决策问题  研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)  《 立几部分 》  问题1  平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。  问题2  用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。  问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。  问题4  异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。  问题5  立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。  问题6  作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。  问题7  等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。  问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。  《解几部分 》  问题9  对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。  问题10  我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。  问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。  问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。  问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。  问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。  问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。  问题16  解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。  问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。  问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。  问题19 求轨迹问题中,纯粹性的简捷判别。  问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。  问题21 对平移变换的解题功能进行综述。  问题22  与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。  《函数部分 》  问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。  问题24 整理求定义域的规则及类型(特别是复合函数的类型)。  问题25  求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。  问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。  问题27 利用条件最值的几何背景进行命题演变,与命题分类。  问题28  回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。  问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。  问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。  问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?  问题32  对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。  问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。  《三角部分 》  问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。  问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。  问题36 整理三角代换的的类型,及其能解决的哪几类问题。  问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为  从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。  问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。  问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。  问题40  三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。  《不等式部分 》  问题41  一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。  问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。  问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。  问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。  问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。  问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。  问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。  问题48 探索绝对值不等式和物理模拟法  如果还有什么相关的课题,请各位同行提出。参考资料:http://sx.dhyz.com/new/Article_Print.asp?ArticleID=174

高中研究课题

阿森纳
菊圣
问卷调查较多,主要对某一现象发表议论。我们高中大多都做这个;还有实验探究,研究一些生活上感兴趣的事 详细点的,有耐心读一下,希望能帮到你!!! 数学研究性学习是学生数学学习的一个有机组成部分,是在基础型、拓展型课程学习的基础上,进一步鼓励学生去探求知识及应用所学知识解决数学的和实际的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和师生之间及学生之间相互交流为主要形式的学习研究活动。它以研究课题为载体,使学生通过最基础的研究活动,学会科研的基本方法,并初步形成严谨的科学精神和科学态度。在数学研究性学习的教学中,师生共同建立起平等、民主、教学相长的新颖关系,能营造一个使学生勇于探索、勇于争论、相互学习鼓励的良好学习氛围。数学研究性学习注重问题的解决,但更加关注学生的探究学习过程。用于数学研究性学习的材料,一般是以课题形式为主,一个课题探讨一个专题。对数学研究性学习的课题,既要是学生所学数学知识的综合与实际应用,又要对学生探究和解决问题有较好的训练价值,对高中学生来说,较好的课题应该是学生在生活实践中有体验的数学问题,或者是与当地社会、经济发展密切相关的数学问题。因此在确定研究课题时,不仅由教师提供,而且更要鼓励学生通过对社会生活的观察、调查、思考,抽象概括出数学问题,从而形成研究课题。下面从课题确定的原则和来源两个方面来谈谈数学研究性学习中研究课题的选择。一、确定研究课题的原则1.适应性原则学生是研究课题的研究者和解决者,是研究性学习的主角,因此,研究课题的选择要与学生现有的知识水平相适应,课题的难度要掌握在让学生“跳一跳够得着”,太难或太容易的问题都不宜作为课题让学生研究,选题时要充分利用学生所学知识,使学生通过对一个问题的深入研究,加深对所学知识的掌握和应用,了解科学研究的过程和基本方法。2.问题性原则在选择课题时,不是提供一篇学生没有学过的教材让学生去学习、理解与记忆,而是呈现给学生一个需要学习和探究的数学问题,这种问题往往是一些背景材料,让学生运用所学知识通过数学建模去解决。3.开放性原则数学研究性学习具有最大的时空开放性,要求学生在确定课题后,走出课堂和书本,通过媒体、网络、调查等多种渠道,收集信息资料,选用合理的研究方法,得出自己的结论。另外,由于各人的兴趣爱好、生活经验及学习能力的差异,对课题的理解,研究目标的定位,研究过程和方法的设计,手段的应用以及研究结果的表达可以各不相同。所以,所选课题应该能让学生应用自己已有的数学知识,从不同的角度,不同的层面得到解决。同时,课题解决过程中学习时间的安排,课题切入点的确定,研究方式的选择,结果的表达等方面均要有相当大的灵活度,为学习者和指导者发挥个性特长和才能提供足够的空间,而不能强调结论的唯一性与标准化。4.社会性原则在确定研究课题时,应强调数学与社会生活实际的联系。数学研究性学习课程的主要目标是培养学生应用所学数学知识去发现问题、解决问题的能力和意识,因此,我们在选择课题时,应特别关注与社会发展及人民生活密切相关的数学问题,使学生通过研究课题的研究学习,学会发现问题的方法,培养创新意识和能力,并进一步体会数学应用的广泛性。5.实践性原则实践性是研究性学习的一个特点。数学研究性学习要使学生在解决研究课题的过程中,通过亲身参与社会调查、信息收集与处理、结论表述与分析验证等一系列实践活动,获取亲身参与研究与探索的体验,体会科学研究的全过程,并使他们逐步形成善于质疑、乐于探究、勤于动手、努力求知的积极态度,激发他们探索、创新的欲望。二、数学研究课题的来源1.深入研究教材,从教材中取得课题数学教材是研究课题的重要来源,新编的高中数学教材(练习部分)已经为我们提供了大量的研究性学习的课题。如果我们注意挖掘教材,就可以从中找到很多适合学生探究的课题。这些课题的特点是学生利用近阶段所学数学知识,通过探究与合作,教师作适当的指导,都能很快得到解决,具有“短、平、快”的特点。2.结合生活、联系社会实际选择课题数学的应用是广泛的,要鼓励学生从生活实际、生产实际中把实际问题提炼成数学研究课题,引导学生“留心观察,处处皆数学”。也可由教师选编一些与社会、生产、日常生活密切相关的研究课题供学生选择解决,这些课题既要有一定的实用价值,又要有一定的趣味性,以吸引学生进行研究探索。例如以下的一些课题:(1)去银行存钱,存五年期和一年期的年利率是不同的。请学生调查银行存款利率,然后解决以下问题:甲、乙两人在同一天各去银行存入1000元钱,甲存为五年期,乙存为一年期并在每年到期时领取本息后一并再存为一年期,每次领取时要交纳20%的利息税,问五年后,甲乙两人谁的收益大,两人的本息合计金额差是多少?(2)在一条生产流水线上有5台机器工作,它们间隔的距离是相等的,我们要在流水线上设一个检验台,零件经检验合格后才能进入下一道工序,若5台机器的工作效率相同,问检验台应设在何处,可使移动零件所走的路程之和最小?如果是n台机器呢?如果这些机器的工作效率各不相同呢?(3)调查报亭卖报情况(进价、售价及卖不出去而退回每份报纸赔钱多少),统计一个月的销售情况,为报亭主人决策,使之收益最大。(4)调查保险公司养老保险险种及分红方法,某人在40足岁时参加保险,或将应交保额逐年存入银行,假设此人预期寿命为75足岁,请你对这两种投资方式进行比较,确定此人是投保收益大,还是存银行收益大。(5)叫做“黄金数”,一个矩形的宽与长之比为黄金数的叫做“黄金矩形”,这样的矩形看起来比较美观,因此有人认为一般的报刊版面的宽与长之比是黄金分割比,请你去学校阅览室实地测量10种报纸杂志的宽与长之比,找出它们的比值大致是什么数,为什么用这个数?(6)现在很多人家都安装了太阳能热水器,请你用所学的数学、物理、地理知识说明在各个不同季节,热水器安放的倾斜角为何值时,可使正午时阳光直射热水器,从而取得最大热效率。根据你的研究,你可以向热水器生产厂提何建议?3.由学生自行提出问题,确定课题高中学生已有一定的观察力和想象力,一旦他们研究问题的积极性被调动起来,他们观察事物、提出问题、解决问题的能力往往超乎教师的想象。以下几个问题就是由学生通过观察生活、总结提炼而提出来的:(1)节假日随父母去超市购物,去收银处付款时往往要排很长的队,如何合理安排收银机,使顾客排队时间最短?(2)商店经常打出打折的招牌来吸引顾客,“打折”背后究竟有什么奥妙,进价和原价到底是多少,调查进价和原价,计算“打折”后的实际利润是多少?(3)居民住宅区中两幢楼房之间的距离为多少时,可以使每幢房子底楼在冬季每天10点到下午2点能晒到太阳?(4)下雨天用各种不同的容器收集雨水,分别计算降雨量,与气象台的预报作比较。(5)足球运动员在射门时,面对对方守门员,射门时的角度、球速与守门员扑球时的移动速度有何关系,能将球射入球门?对学生提出的问题,需要教师从可行性、实用价值等方面进行分析指导,以防不切实际。但要以鼓励为主,对目前限于知识结构暂时无法解决的问题,可让学生提出解决问题的设想,切不可轻易否定而打击学生的积极性。有的课题可适当增加条件,以使课题更切实可行。在实施数学研究性学习时,课题可以在课堂上或课外布置给学生,让学生在课后进行探究学习,收集信息资料做研究,可一人研究,也可以几人合作,教师可作适当的点拨指导,然后在课堂上进行交流,教师主要是做听众,也可发表意见、见解或提出疑问,不要追求结论的完美,要重视学生的参与过程。麻烦采纳,谢谢!

适合高中研究性学习课题有哪些?

外籀
白丝线
适合高中生研究的学习课题领域可以是:数学、新高考形势下的高中生、多媒体课件课堂使用利弊探究、中学生课外阅读状况调查、废旧电池的回收与利用塑料及其回收利用修正液对人体的危害有关饮料中非食用色素的调查纯净水是否“纯净”、浅淡当今社会之健康饮食化妆用品的副作用利用太阳能对未来的积极影响中学附近不洁食品状况调查。数学研究性学习是学生数学学习的一个有机组成部分,是在基础型、拓展型课程学习的基础上,进一步鼓励学生去探求知识及应用所学知识解决数学的和实际的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和师生之间及学生之间相互交流为主要形式的学习研究活动。它以研究课题为载体,使学生通过最基础的研究活动,学会科研的基本方法,并初步形成严谨的科学精神和科学态度。在数学研究性学习的教学中,师生共同建立起平等、民主、教学相长的新颖关系,能营造一个使学生勇于探索、勇于争论、相互学习鼓励的良好学习氛围。数学研究性学习注重问题的解决,但更加关注学生的探究学习过程。用于数学研究性学习的材料,一般是以课题形式为主,一个课题探讨一个专题。对数学研究性学习的课题,既要是学生所学数学知识的综合与实际应用,又要对学生探究和解决问题有较好的训练价值,对高中学生来说,较好的课题应该是学生在生活实践中有体验的数学问题,或者是与当地社会、经济发展密切相关的数学问题。因此在确定研究课题时,不仅由教师提供,而且更要鼓励学生通过对社会生活的观察、调查、思考,抽象概括出数学问题,从而形成研究课题。

高中数学课题具体有哪些选择?有范例吗?

罗格河
鸳鸯茶
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。采纳哦数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

高中研究性学习课题都有什么

大突破
里人有病
你要的是数学的话,1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析 ① 从尝试到严谨 ; ② 从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、统计月降水量41、如何合理抽税42、市区车辆构成43、出租车车费的合理定价44、衣服的价格、质地、品牌,左右消费者观念多少?45、购房贷款决策问题你要的是化学的话:环境保护1、加快防治“白色污染”的步伐2、对(某某地区)废电池回收情况的调查及建议3、(某某地区)饮用水污染与自然人为因素的关系和控制对策4、(某某地区)空气中SO2对土壤的负面影响及治理措施5、(某某地区)废旧电池的回收与利用6、(某某地区)空气污染现状及对策7、二恶英污染8、浅谈水资源的污染其治理9、汽车尾气的治理及再利用10、如何降低汽车尾气净化的成本11、关于城市垃圾资源化的设想与调查12、塑料及其回收利用13、绿岛的保护14、大气污染与人体健康15、摘掉城市的毒瘤——城市垃圾处理问题研究 16、汽车安全与环保问题17、酸雨与人体健康18、环保与产业的结合19、光污染与光能节约20、汽车与环境21、无污染汽车22、燃煤脱硫的简史及其发展23、日韩发生重大核事故24、臭氧层破坏25、太湖零点行动26、长江上游生态保护27、黄河断流28、西部开发与环境保护29、绿色文明30、淮河治污零点行动31、苏州河综合整治32、电磁辐射污染33、环境与健康生活中的化学问题1、农用生物肥2、新型建筑材料的开发与利用3、生命之源——营养4、家庭包装5、以氢气(天然气)为燃料的灶具6、正确提取热量及饮食7、新型墙对材料的开发和利用8、方便面可食性内分装9、油烟革命10、装潢材料的应用及改进11、金属防锈的研究12、关于低自由基、无毒香烟13、有关饮料中非食用色素的调查14、化学与农村经济15、纯净水是否“纯净”16、环保型防震材料的开发17、维生素王国探秘18、浅淡当今社会之健康饮食19、修正液对人体的危害20、洗涤用品的发展与前景21、研究高二学生早上的饮食、22、食用油中过氧化值的分析23、中学生营养与健康24、研究特别环境下使用的救生衣25、浅谈食盐与人体健康资源利用1、海洋资源的利用与保护2、太阳能发展前景及利用3、创造绿色电能4、未来能源技术5、石油的开发与利用6、绿色能源离我们多远7、食品对大脑的营养供应研究 8、常见荤菜对大脑智力发展的影响研究9、中学附近不洁食品状况调查 10、浅谈可再生能源11、利用太阳能对未来的积极影响 12、潮汐资源的调查研究化学实验(改进)探索与研究1、亚硝酸盐在不同土壤中累积的研究2、眼睛防水的实验3、关于铵盐冷却性能的实验与探讨4、利用废物制取活性炭5、回收、利用旧电池中的有用物质6、再生橡胶废水的胶色研究7、乙酸乙酯的制备与最大化8、酒精可燃与不可燃的临界浓度的研究 9、无污染氯气装置的研究 10、用植物色素制取代用酸碱指示剂及其变色范围的测试 11、有机消毒剂应用的初探12、简析植物提取香水的可行性 13、对蛋白质性质的论证别的我就不知道参考资料:http://www.ycy.com.cn/2010/Blog/Item.aspx?id=15&logId=41

要搞一个有关高中数学的课题但不知道哪些

常名
乃无所陵
怎样学好高中数学?首先要摘要答题技巧现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?老师在上数学课我相信数学你们应该都知道吧,不管是在什么时候,不管是学习上面还是在生活方面处处都是要用到的,到了高中该怎样学好高中数学,现在我就来教你们一些数学的技巧.选择题1、排除:排除方法是根据问题和相关知识你就知道你肯定不选择这一项,因此只剩下正确的选项.如果不能立即获得正确的选项,但是你们还是要对自己的需求都是要对这些有应的标准,提高解决问题的精度.注意去除这种方式还是一种解答这种大麻烦的好方式,也是解决选择问题的常用方法.2、特殊值法:也就是说,根据标题中的条件,择选出来这种独特的方式还有知道他们,耳膜的内容关键都是要进行测量.在你使用这种方式答题的时候,你还是要看看这些方式都是有很多的要求会符合,你可以好好计算.3、通过推测和测量,可以得到直接观测或结果:近年来,人们经常用这种方法来探索高考题中问题的规律性.这类问题的主要解决方法是采用不完整的归类方式,通过实验、猜测、试错验证、总结、归纳等过程,使问题得以解决.填空题1、直接法:根据杆所给出的条件,通过计算、推理或证明,可以直接得到正确的答案.2、图形方法:根据问题的主干提供信息,画图,得到正确的答案.首先,知道题干的需求来填写内容,有时,还有就是这些都有一些结果,比如回答特定的数字,精确到其中,遗憾的是,有些候选人没有注意到这一点,并且犯了错误.其次,没有附加条件的,应当根据具体情况和一般规则回答.应该仔细分析这个话题的暗藏要求.总之,填空和选择问题一样,这种题型不同写出你是怎样算出这道题的,而是直接写出最终的结果.只有打好基础,加强训练,加强解开答案的秘籍,才能准确、快速地解决问题.另一方面要加强对填报问题的分析研究,掌握填报问题的特点和解决办法,减少错误.高中数学试卷怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.

要搞一个有关高中数学的课题

周繇
尼内特
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出

如何开展好高中数学研究性学习

气禀
未信
研究性学习(inquiry learning)是指学生在教师指导下,以类似科学研究的方法,从学习生活和社会生活中选择并确定专题,积极主动地获取知识,应用知识,解决问题的学习活动。这种学习活动的核心是改变学生的学习方式,强调自主学习、合作学习。数学教学大纲中对研究性学习提出了以下教学目标:(1)学会提出问题和明确探究方向;(2)体验教学活动的过程;(3)培养创新合作精神和应用能力;(4)以书面材料、口头报告,墙报等形成反映研究性成果,学会交流。这就要求我们对研究性学习的教学不同于传统知识的教学。根据高中新课程计划(试验修改稿),数学大纲要求,高中数学教学中将有1/6左右的教学时间用于开展研究性学习。这对教师的教学能力提出了更高的要求。教师本身是否具有进行研究性学习的能力,怎样对学生进行研究性学习的指导,实现教学行为方式的重大转变,需要有一个较长的适应过程。本文试图从高中数学教学的角度,谈谈个人开展研究性学习的一些实践与认识。以期为尽快实现研究性学习教学从理念到操作的转化抛砖引玉。一、研究性学习教学案例分析、介绍:(1)提出问题往往比解决问题更重要。教师首先要根据教学目标,寻找与教学内容相关的,可以激发学生兴趣的材料,创设出特定的情境,向学生提出要研究的领域,引导学生发现并提出需要探究的问题。爱因斯坦曾说过:“提出一个问题往往比解决一个问题更重要,因为解决问题也许仅仅是一个数学上的技能而已,而提出新的问题,新的可能性,从新的角度去看待旧的问题都需要创造性的想象力”,因此,提出问题是研究性学习要培养的主要能力之一。案例一,“一个等差数列的性质”的教学如果 成等差数列,则有即 …………(1)在讲过这一性质后,我要求同学们推广上述命题(设计、提出问题,并讨论解决办法)。下面摘录同学在研究性学习教学中提出的问题,、结论及一些思考。问题一,如果 成等差数列,依照(1)式能得到什么结论?即 =0…………(2)问题二,如果 成等差数列,能得到什么结论?即 …………(3)问题三,如果 成等差数列,能得到什么结论?即 时,…………(4)问题五,如何证明上述结论,将上述命题的条件与结论互换是否可行?到此,同学们采取研究方法仍然是特殊到一般的方法,但同学们很快发现当 时,上述反命题显然成立,当 时,上述反命题就不成立了,如1,2,4,7满足 ,但这此数显然不成等差数列。那是否研究到此结束了呢?问题六,同学很快就发现当 时, 可以得出 ,这就提示给我们,如果要使数列 成等差只需再添一个条件, =0,从而 成等差数列就需添两个条件……这样,同学们又估计到了它的一个反命题:成立,则 成等差数列………………(5)问题七,利用数学归纳法证明上述命题。在这样的研究性学习的教学过程中,学生们体验到了不断提出问题,解决问题所尝到的成功的喜悦。能提出需要探究的问题,在这里显然比找到答案更为重要。其实很多规律就蕴藏在我们平时教学之中,关键是我们的教师是否能让学生引起足够的重视,并引导学生发现与提出问题。(2)让学生积极参与,体验合作在研究性学习教学过程中,教师应创设让学生充分参与的情景,实现有意义的自主学习。一方面要给予学生自主学习的时间,让学生有足够的时间去探索、思考、交流。另一方面,教师要鼓励学生质疑问题,欢迎学生争辩、发表独立见解,确保学生全程参与,全方位参与。从这层意义上讲,研究性学生即要培养学生参与意识,学会合作交流。案例二,一道例题引发的研究已知 是周期函数,且周期为2,等式 对一切 均成立,求证 为偶函数。这是高一理科班函数复习时的一道例题。这道例题很普通,但内涵却很丰富,颇有研究价值。例题教学后,把学生分成5人一组,要求对这个问题进行多方位的研究,然后交流研究成果(老师提示:研究条件与结论之间关系;从图像的角度进行研究;猜测具有怎样的性质,函数是周期函数;对奇函数、偶函数的定义再作推广;通过研究得到什么启示等)。下面将各小组开展研究性学习活动后,各小组交流情况整理如下:[小组I研究结论]两个条件和一个结论这三者中的任何两者都可以推证出第三者。[小组II研究结论]由 为偶函数,则对称轴方程为对一切 成立,对称轴方程得出下列猜想并可证明:(1)若一个函数的图像有两条不同对称轴,这个函数是周期函数。(2)若一个函数的图像有两个不同对称中心,这个函数是周期函数。(3)若一个函数的图像有一个对称中心和一条对称轴,则这个函数是周期函数。[小组III研究结论]对函数 存在常数 ,使函数在定义域内任意 ,若都有 成立,则 为偶函数,若都有 成立,则 为奇函数。[小组IV研究结论]通过研究得出启示一,函数性质,如奇偶性,周期性与图象对称性是密切相关的;启示二,数形结合在发现问题,研究问题和解决问题中起着极为重要的桥梁作用。(3)发展应用数学知识解决实际问题,使数学回归到生活中去。研究性学习教学实施过程中应特别注意理论与实际生活的联系,学以致用,重在知识技能的应用,是研究性学习的很重要特征之一,通过研究有利于引导学生关注社会、关注自然,培养学生社会责任心和使命感,形成积极的人生态度。这在以往传统的教学课上是无法得到的。案例三,建立函数关系,解决实际问题函数的本质是变量与变量之间的对应关系,它反映事物运动变化过程中的内在联系,不少实际问题都可以抽象概括成函数表达式。即建上一个函数模型,从而简捷、准确地找到合理的答案。然而,由于本质上的差异,反映变量之间的依赖关系的函数模型呈现各种不同的面貌,这给我们的学生深入社会,利用数学知识解决实际问题提供可研究性学习的基础。为激发学生的学习兴趣,我布置了一个作业,“调查家庭生活中数学素材,从建立函数模型角度,为自己家庭解决实际问题”,一星期后,学生收集的资料五花八门,经分组整理,学生提出了各种各样的研究问题。如家庭生活中的分期付款问题(购房、买车等),知识售价、月利息、每月还款数,需多少时间还清,每次还款多少最合算;家庭装修问题;合理设计家庭开支问题;股票投资问题;家庭养殖业问题等等。老师把学生收集的素材分类,合并、提出修改意见后,分小组确定研究方向。经小组研究,总结出了许多解决实际问题的函数模型,如代数函数模型,指数函数模型,线性规划模型,盈亏平衡模型,投入产出模型等。解决实际问题的过程是学生体验研究性学习教学活动的过程,问题解决(无论是有答案、无答案,还是暂时无答案)都会使学生兴奋、投入,更重要的是,研究性学习的整个过程,自始自终学生都是研究者,培养了学生科学的态度,发展学生对家庭、对社会责任心,让同学在实践研究中获得直接经验。二、研究性学习教学基本框架及思考。1、研究性学习教学与传统数学教学比较,其最大区别在于传统课程有市统编教材,有较为成熟的实施教学方法、手段、评价体系,而研究性学习教学很多内容还是一块未开发的“自留地”,相对自由度较大,是教师自主的开发。根据新课程计划对研究性学习教学提出的目标,结合本人教学实践,我认为研究性学习教学的主要特点是:以发展探究思维为目标,以学科基本结构为内容,以再发现为学习方法。应强调(1)学生是“发现者”,在教师指导下,激发学生对数学学科本身的兴趣,通过自主探索,实践活动,去发现规律。(2)教师要为学生创设一个自主的学习环境,在教师指导下,将启发探究、评价、总结有机结合。下面让我们试图勾勒一下研究性学习的基本框架(如表所示)过程 内容 目的 操作问题情境阶段 确定课题 运用学生原有的知识和经验,选择有能力进行探索的问题 启发学生在已有一些知识的基础上,提出自己感兴趣的课程,确定对课题的探讨步骤及研究方案实践体验阶段 实证收集 了解和学习收集资料的方法,学会观察和检索 引学学生深入实际,围绕问题,引经据典,旁征博引,收集数据与事实依据进行分析 从各种信息中归纳出解决问题的重要思路,学会筛选和判断 要求学生对采集的事实及数据进行去粗取精、去伪存真的分析,对课题、议题作出“是什么”及“为什么”的初步解释表达交流阶段 初步交流 认真吸取他人意见和建议,不断补充和完善 初步研究成果在小组内或同学中充分交流得到结果 完成课题研究,通过深层次的思考,得到知识结论的体验 形成书面材料和口头报告,以辩论会、研讨会、展板、墙报、电子课件、网页等方式表达,进行相互交流和研讨2、研究性学习的教学大都采用课内研讨型。让学生经历不同背景之中,去发现问题,实施解决问题的方法,检验、论证及交流所获得的结论。也就是让学生自己思考研讨,怎么做、做什么,而不是让学生接受老师思考的现成的结论。它是一种积极的学习过程。研究性学习的教学内容,要能够引起全体学生的主动思考,引起同学(或与老师)之间交流。因此,研究的问题应当具有不同的层次性,要使得绝大部分学生都能够思考它,并且都有思考的空间。同时应允许结果的多元性,在可能的前提下,要使得不同的学生都能表达自己对问题的理解及见解的机会。3、研究性学习教学对学生的要求与评价。学生的发展是课程实施的出发点和归宿。课程实施应当着眼于学生全面素质的提高,为学生健合人格的形成以及能力、知识诸方面的学习与发展创造条件,研究性学习教学要特别重视对学生综合能力的培养:(1)要有敏锐的观察与思考能力;(2)要有搜集与积累资料的能力;(3)要有综合运用各科知识解决实际问题的能力;(4)要有一定的人际交往能力和合作精神。研究性学习教学中,学生各种活动中获得的不仅仅是知识,更是一种学习品质、能力、从而为他们的终身学习、长远发展奠定坚实的基础。由于研究地点、请教对像、研究小组的不同,对学生参与研究性学习的评价不可能有统一标准,教师应以肯定为主,保护学生参与积极性。应从(1)学生参与研究性学习活动态度情况;(2)学生在研究性学习活动中获得体验情况;(3)学生创新精神、社会实践能力发展情况;(4)交流合作情况等综合起来加以评价。4、研究性学习教学对教师的要求:在研究性学习教学中,教师是组织者、参与者和指导者。教师在教学目标的设计、教学活动的组织、现代化教育技术的运用等方面都要有利于每一个学生的发展。教师的教学是富有创造性的活动,每一位教师都有责任爱护和培养学生的探索精神、创新精神,营造崇尚真知、追求真理的氛围,促进学生自主学习,独立思考,为学生禀赋和潜能自由、充分地发展创造宽松的环境。实施研究性学习教学,培养学生的创新能力,关键在于必须有创造型的高素质教师。他们必须具备:(1)超前的教育观念;(2)快速接受新知识的能力;(3)高超的教学技能:①能充分发挥学生的全体作用的能力;②能熟练使用现代教学手段的能力;③娴熟的德育技能;(4)具有开拓创新精神和较强的科研技能。

求几个高中研究性课题(最好可以获奖~)

岔路口
风琴手
生活中的数学知识城市交通治理民居服饰与自然地理的关系校服,我来设计我们喝的水健康吗城市里的不和谐过夜剩饭菜是否还能够食用北纬30°真的那么神秘吗2012是否真的存在 地区旅游资源的开发