欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

高一数学研究性课题

酷学校
渔童
如果你是想活跃气氛,我可以给你很多适合高一数学思维的题目,但是如果你要是和学的东西搭配我暂时想不出来,可以给你两个题目做参考 有8个钢球看上去一样(外形完全一样),其中有一个超重,现在我有一个天平,请问我如何只秤两次,把这个超重的钢球选出来(选自微软一招聘题) //考的思想有:分类思想 还有一个题目: 一个水杯里面有一杯水,满的,我每次喝一口喝水杯中水的一半,我们知道是喝不完的,杯子里面总是会有水。 (数学里面的谬论)一只小狗朝一个主人跑过去,我们这样设想,小狗要跑到他的主人身旁,首先要跑到他们距离的一半,当跑到这个主人一半距离的时候,小狗又要继续跑到他们俩距离的一半才能到主人面前,小狗要跑到主人身旁总是要跑到他们距离的一半才能达到目的....我们知道小狗是能跑到主人的身旁的,甚至还可能超过主人继续向前跑。 问题出来了,一杯水我们把杯底看成是一个参照点,而同样地,那个主人我们把他看成参照点,这样小狗和水杯中的水面可以看成是朝他们运动的,为什么会有不同的结果呢? 很容易理解的问题,其根本原因在哪儿呢?(这个问题是我前几天想出来的。没有答案的,学生踊跃发言记录下)到时给我留言哦。探究直线与圆的关系

高一数学研究性学习报告

功之怒
世硕
兴趣学习

高一数学研究报告函数在生活中的用处

观于大山
飞鱼秀
函数在生活中的应用 函数在数学这个大家庭中是一个必不可少的成员,而在日常生活中他也同样随处可见。正如我们学习过的一次函数、二次函数,正比例函数、反比例函数、三角函数......这些形形样样的函数,都在用不同的表示方法、不同的角度来表示着自然界中变量与变量之间的关系。因此,数学中函数的知识与我们的生活实践有着不可分割的联系。 例如在生活当中的利润问题:总利润=每件利润×销售量、人口增长率问题、个人所得税问题、市场预测问题、运货调配问题、经济图表问题、平衡价格问题、工程造价问题......这些生活中常见的问题在计算、应用方面离不开函数知识。利用函数就可以把各种数据都放到表格里,然后再绘制成函数图像,从平面直角坐标系中观察出事情发展的趋势以及计算出他们之间的函数关系式,来进行合理的预算。有时还可以利用某些函数的函数图像来求最值。由此可见,函数是十分重要的一部分。 还有涉及函数的应用题,这些应用题更是与生活实际联系密切,它不仅能培养我们分析问题和解决实际问题的能力,还能提高我们的思维素质。同时利用函数也可以更简便地解决问题。所以,学会了解和运用函数也是十分重要的。 方才所说的均是与代数有关的函数,而三角函数则是主要运用在几何问题当中。像利用三角函数求值问题、推算角度问题、判断三角形问题......也都是非常常见的。 所以,无论是代数还是几何,计算还是应用,考试还是生活,都离不开函数知识。有了函数,可以让我们的生活更加地便利。所以,无论什么时候我们都离不开函数,更离不开数学。就让我们用一颗平凡的心,在生活中一起寻找他们的踪迹吧!参考资料:网上搜的非原创

关于高一数学的研究性学习的解答

无迹
动荡湾
楼主的数学一定很好吧,你提的几个问题都是很有研究性的,能够提的出有研究性的问题是学好数学的第一步.1,对于镜子里的像呈周期性的问题,你能联想到数学三角函数里的周期性问题,是把数学运用到生活中去的好例子,三角函数中的正旋函数的对称中心就是余旋函数的对称轴,反过来也适用,这说明正旋函数与余旋函数是可以互相转化的,这就要用到他的周期性问题.2数形结合确实是研究数学的好方法,具有直观性的特点,把数与形结合起来,常见在一元二次函数里面.3单位圆具有圆上任意一点到圆心的距离都相等的特点,圆上这点到横轴的线叫正旋线,到众轴的线叫余旋线,再看象限来定正负.可以把直角三角形的一些知识运用到里边去,对于比较在一个范围内正余旋的大小的临界点分析是很有帮助的.4对于化简求值的问题用的比较多,齐次式,正切化旋.5例如由sin(派/2-a)=cosa,sin(派/2+a)=cosa,cos(派/2-a)=sina,cos(a-派/2)=sina,cos(a+派/2)=-sina,sin(派/4+a)=sin(派/2-派/4+a)=cos(派/4-a)6比如说求得三边相等,那么三角相等并等于60度也就出来了.7运用均值不等式解题公式a+b>2根号ab,ab最好是定值,像tanacota之类的8三角转化为均值,就是把函数问题变位比较大小,反之亦然.9这种变换在高一上学期用的比较多,有些题变换主元能让题目边得比较简单,要根据题目来定.10.(1)作差,再看得数大于还是小于0,有时还需要对差进行分解公因式,或者再运用一些二次函数的知识一类的.(2)变形作差,性质和前一个一样的,只是要运用一些技巧,比如平方作差啦(3)作商,前提要是在两个都是正数,看商是大于或小于或等于1(4)平方作差,前提是两个都是正数.

急急急,!求一份高一数学研究性课题报告

问仁
年不可举
这个,还是自己收集比较有意义吧

高一数学。关于函数的研究报告。急!!

多而无已
墨翟
高 二 班第1组研究性学习结题报告 关于y=ax+x/b性质的论文组长:夏正春 组员:薛楠 徐庶杰 廖可飞 张友骞 阮念寿 杨隆坤 陈秀鹏指导老师:豆春红日期:二0一0十二月二十号关于y=ax+x/b性质的研究性学习论文 摘要:探讨函数y=ax+b/x(主要是在a·b>0的情况下)的函数一般性质和特性,调查出函数的简单应用。通过小组合作、网络调查、文献研究等多种手段。得出结论,对号函数是特殊的双曲线,也具有焦点、渐近线、离心率等。 关键字:特殊双曲线、函数性质 应用一,课题背景关于函数y=ax+b/x的性质及在数学中和现实生活中的应用等问题的探讨。二,课题目的此次研究性学习主要是要通过小组合作的方式,自主探究出函数y=ax+b/x(主要是在a·b>0的情况下)的函数一般性质和特性,调查出函数的简单应用。重点研究在关于函数y=ax+b/x性质的探究,然后利用互联网等多媒体手段,了解y=ax+b/x函数在日常生活中解决的问题。这次团队合作方式的研究性学习,旨在增强各成员间的合作能力和表达沟通能力;同时,也将培养我们对于数学问题的理解、解决能力,提升我们的逻辑抽象思维能力。三,课题研究方法此次研究性学习主要是通过小组合作的方式,自主探究出函数y=ax+b/x(主要是在a·b>0的情况下)的函数一般性质和特性,调查出函数的简单应用。重点研究在关于函数y=ax+b/x性质的探究,然后利用互联网等多媒体手段,了解y=ax+b/x函数在日常生活中解决的问题。:四,课题研究过程参照平时老师教学过程中关于函数的探究思路,我们决定先对a,b进行讨论。当a=0,b=0时 函数y=ax+b/x即为X轴当a=0,b≠0时 函数y=ax+b/x为双曲线当a≠0,b=0时 函数y=ax+b/x即为直线当a≠0,b≠0时 函数y=ax+b/x是以y=ax和y轴为渐近线的双曲线用几何做图方法画出函数y=x+1/x和y=x+3/x的图像。从函数图像上,观察得到函数的单调性、对称性,以及函数大致的值域和定义域。为了获取函数精确的值域和定义域,我们使用了基本不等式的相关知识。以y=x+1/x为例,其单调性为:[-1,0)和(0,1]区间上,函数是递减的;在(-∞,-1)和(1,+∞)区间上,函数是递减的 对称性:该函数图像是以原点为对称中性的中心对称图形。值域:(-∞,-2]∪[2,+∞] 定义域:(-∞,0)∪(0,+∞)。在掌握函数在特殊取值情况下的一般性质之后,我们从互联网上搜索到关于函数y=ax+b/x的相关内容。我们了解到y=ax+b/x这样的函数叫对号函数,别名耐克函数。 五,课题研究结果y=ax+b/x性质的总结。(主要为a>0,b>0时的性质)大致图像定义域 (-∞,0)∪(0,+∞)值域 (-∞,-2「ab]∪[2「ab,+∞)对称性 关于原点O对称单调性: ①(0,「b/a」∪(-「b/a,0),函数是递减的②(-∞,-「b/a)∪(+「b/a,+∞),函数递增的最值 ① x<0,当x=-「b/a时,ymax=-2「ab② x>0,当x=「b/a,ymin=2「ab特殊性质: 函数图像无限接近于直线x=0和y=ax从特殊性推广到一般性。我们参照从网上得到的信息总结了以下表格中的部分性质。特殊性质:①对号函数是双曲线旋转得到的。同双线一样也有渐近线,顶点等。(以y=x+1/x为例:其方程为rsinα=rcosα+1/rcosα,逆时针旋转22.5度后为rsin(α-π/8)=rcos(α-π/8)+1/rcos(α-π/8),化简即得,其实半轴平方为2^1/2+2,虚半轴平方为2^1/2-2,离心率平方为4-2^1/2)基于对号函数的以上性质,它常用于研究函数的最值和恒成立问题。例如:对于函数f(x)=12/x+3x的x<0时最大值,x>0时最小值可轻易由对号函数的性质可以知道x<0时,ymax=-6。 x>0时ymin=6.当然这只是在数学中的简单而又基本的应用,稍复杂的应用会在与求含两个变量的最值如已知正数x,y满足8/x+1/y=1,求x+2y的最小值。运用对号函数的以上性质,在解决数学问题时会很简单。在解决生产科研和日常生活的问题上,对号函数也可为是功劳不小。例如:①某食品厂定期购买面粉,已知该厂每天需用面粉6t,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购面粉每次需支付运费900元。求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? (1)设该厂应每隔x太难购买一次面粉,其购买量为6x吨,由题意知,面粉的保管等其他费用为3[6x+6(x-1)+…+6*2=6*1]=9x(x+1)。 设平均每天所支付的总费用为y元,则y=1/x[9x(x+1)+900]+6*1800=900/x+9x+10809利用对号函数的性质可知当x=10时,取得最小值10989.即该厂应每隔10天购买一次面粉,才能是平均每天所支付的总费用最少。在解决该试剂问题时,无非是建立对号函数模型,然后再利用函数性质解决。再如:② 经观测,某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间有函数关系:y=920v/v²+3v=1600(v>0)⑴在该时段时,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?⑵为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?解决问题思路,大同小异。 六,研究体会通过这次数学研究学习,我们深深体会到数学正是无处不在,不敢想象如果没有数学,我们的世界会是什么样子。团队的合作精神得到提升,历练了我们每个人发现、解决问题的能力;于此同时,也培养了良好的沟通表达能力。 总而言之,此次研究性学习的成功,是团队合作的成果。 七,参考文献《与名师对话》 主编:韦民 大众文艺出版社《冲刺金牌 高中数学奥林匹克竞赛教程》主编:严军 马传渔 吉林教育出版社

高中数学课题研究报告

反复嚼
如式
一、 课题报告的结构及写作方法 撰写课题报告有一般性的共同要求。但不同类型的课题报告由于其结构的不同,表现出不同的风格和特色。研究者撰写课题报告,首先必须把握各类报告的特征。 教育调查报告是对某种教育现象的调查,经过整理分析后的文字材料。一般由题目、引言、正文、讨论或建议、结论等几部分组成。 教育实验报告是教育实验之后,对教育实验全过程及其结果进行客观、概括地反映的书面材料。一般由题目、引言、实验方法、实验结果、结论、分析与讨论、参考文献和附录等几部分组成。 教育经验总结报告是对在教育教学实践中,经过去粗取精、去伪存真的积极探索而积累起来的经验的系统化、理论化的书面材料。由题目、引言、正文、结尾等几部分组成。 至此可见,课题报告的写作形式是不尽相同的,但可以归结为前言,正文、结论这种三段式的基本格局。 一篇完整的教育课题报告。除了上述几个组成部分外,还应有署名和参考资科两个部分。其目的是表示对报告负责并表明对报告的所有权。附录和参考资料是必须向读者交代的一些重要材料,参考文献是指在课题报告中参考和引用别人的材料和论述。应注明出处、作者、文献标题、书名或刊名、卷期、页码、出版机构及出版时间。 二、撰写课题报告的基本要求 1.引言 引言是课题报告的开场白。引言部分必须说明进行这项课题研究工作的缘由和重要性;前人在这一方面的研究进展情况,存在什么问题;本研究的目的,采用什么方法,计划解决什么问题,在学术上有什么意义等。要求简明扼要,直截了当。应该指出的是,有的人在文章中对前人的工作随意否定,或轻易断言此问题前人没有研究过,属于 历史空白,这是不妥当的。怎样开头为好,应根据课题报告的内容、各人的写作风格等因素全面考虑后确定。但必须注意防止面面俱到,不着边际,文不对题;或一步登天,言尽意止,不留余地等毛病。 2.正文 正文是课题报告的主体,占报告的绝大部分篇幅;是课题报告的关键部分,体现着报告的质量和水平。所以,必须重视正文部分的撰写。各种不同类型的课题报告在正文部分叙述的内容不尽相同。但要写好正文部分,都必须掌握充分的材料,然后对材料进行分析、综合、整理,经过概念、判断、推理的逻辑过程,最后得出正确的观点。并以观点为轴心,贯穿全文,用材料说明观点。做到材料与观点的统一,这是基本的要求。对初学者来说。往往易出现两种毛病:一种是只限于表述自己的论点,而缺乏科学的论证;只有论点,没有材料,缺乏说服力。另一种毛病是罗列大量材料,平铺直叙,看不出其主要论点是什么。出现上述毛病的原因就在于没有能以确凿的论据来说明论点,做到论点与论据的统一。为了科学、准确、生动形象地表达研究成果,提高说服力和可信性还应减少不必要的文字叙述,而采用图、表、照片来集中反映数据和关键的情节。当然,选用的图、表、照片也要注意少而精,准确无误。 3.结论 课题报告的结论部分是作者经过反复研究后形成的总体论点,它是整篇报告的归宿。结论必须指出哪些问题已经解决了,还有什么问题尚待研究。有的报告可以不写结论,但应作一简单的总结或对结果开展一番讨论;有的报告可以提出若干建议;有的报告不专门写一段结论性的文字,而是把论点分散到整篇文章的各个部分。不论是哪种类型的科学研究报告。都必须总结全文,深化主题,揭示规律。而不是正文部分内容的简单重复,更不是谈几点体会,喊几个口号。写结论必须十分谨慎,措词严谨,逻辑严密,文字简明具体,不能模棱两可,含糊其辞。 三。撰写课题报告应注意的几个问题 1.重点应放在介绍研究方法和研究结果方面。课题报告的价值是以方法的科学性和可靠性为条件的,而这两者又有内在的联系,因为只有研究方法是科学的,才能保证研究结果是可靠的。人们阅读或审查课题报告,主要关心的是如何开展研究,在研究中发现了什么问题,这些问题解决了没有,是如何解决的。研究结果在现阶段达到什么程度,还有什么问题需要继续解决等。因此,写作课题报告,主要精力应花在方法和结果部分,把研究方法交代清楚,使人感到该项研究在方法上无懈可击,从而不得不承认结果的可靠性。 2.理论观点的阐述要与材料相结合。在课题报告中怎样使自己的观点得到有力的论证,是应该关心的重要问题。论点的证实除了必须依靠逻辑的力量外,还需要依靠科学事实的支撑,做到论点与事实相结合。课题报告一定要有具体材料,尊重事实,从事实中列出观点。首先在论述过程中要处理好论点与事实的关系,要求研究者首先选好事实。除了要注意事实的典型性、科学性以外,还要善于用正反两方面的事实来说明问题,揭示普遍规律。其次是恰当地配置事实,用事实论证,主要是用来帮助人们理解不熟悉的论点。 3.分析讨论要实事求是,不夸大,不缩小。在下结论时要注意前提和条件,不要绝对化,也不要以偏概全,把局部经验说成是普遍规律

高中数学课题具体有哪些选择?有范例吗?

逆之则凶
播抗战
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。采纳哦数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

提供一些数学研究课题,可以写高中数学论文的那种

蓝烟火
虽问道者
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:http://sx.dhyz.com/new/Article_Print.asp?ArticleID=174参考资料:爱o不释手