欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研高数A包括什么?

务义
瞻明
考研高数A包括高等数学、线性代数、概率论与数理统计。考试要求:1、理解函数的概念。2、了解函数的有界性、单调性、周期性和奇偶性。3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。4、掌握基本初等函数的性质及其图形,了解初等函数的概念。5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。6、掌握极限的性质及四则运算法则。7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。扩展资料:一、适用范围高等数学A(或高等数学1)适用于力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术。交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科的研究生招生。二、命题原则1、科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。2、覆盖全面的原则考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。3、控制难易度的原则考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。4、控制题量的原则考研数学试题的题量控制在20-22道之间(一般6道填空题,6道选择题,10道大题),保证考生基本能答完试题并有时间检查。数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。参考资料来源:百度百科-考研数学参考资料来源:百度百科-高等数学A

考研数学高数有哪些考点

此其柢也
哈什尔
考研数学高数常见考点如下:函数、连续、极限:这部分内容需要理解函数和极限的相关概念以及它们的运用法则,了解函数的连续性并且要学会运用这些规则。向量个考研高数里面的一个非常重要的考点,这部分主要的考试重点有向量代数和空间解析几何,需要了解一些概念和方程式,并且要学会解决一些问题。无穷级数:这是考研高数中有一个考察的内容,需要了解一写函数的发散特点和必要充分的条件,会写出部分函数的表达式。

考研高数上下册都考吗

厉与西施
臣有杀君
考研高数上下册都要考。针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求。硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三。具体不同专业所使用的试卷种类有具体规定。扩展资料:考研数学的复习计划:第一阶段复习之始,很有必要先把数学课本通看一遍,主要是对一些重要的概念,公式的理解和记忆,当然有可能的话顺便做一些比较简单的习题,效果显然要好一些。这些课后习题对于总结一些相关的解题技巧很有帮助,同时也有助于知识点的回忆和巩固。第二阶段善于总结,多多思考。总结是一个良好的复习方法,是使知识的掌握水平上升一个层次的方法。在单独复习好每一个知识点的同时一定要联系总结,建立一个完整的考研数学的知识体系结构。第三阶段当然每一个阶段都不能少了做题,多见考研题型,多训练做题思路,熟悉考研出题方式。数学考研题的重要特征之一就是综合性强、知识覆盖面广,一些稍有难度的试题一般比较灵活,对知识点串联的要求比较高,只有通过逐步的训练,不断积累解题经验,在考试时才更有机会较快找到突破口。参考资料来源:百度百科—考研数学

考研数学 高数

不寻常
世世代代
1、数学一: ①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元 函数的微积分学、无穷级数、常微分方程) ②线性代数(行列式、矩阵、向量、线性方程组、 矩阵的特征值和特征向量、二次型) ③概率论与数理统计(随机事件和概率、随机变量及其概 率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数 理统计的基本概念、参数估计、假设检验)。 数学二: ①高等数学(函数、极限、连续、一元函数微积分学、常微分方程) ②线性代数(行列式、 矩阵、向量、线性方程组、矩阵的特征值和特征向量)。 2、数学(一)适用的招生专业为: (1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及 工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇 航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学 科、专业。 (2)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。 数学(二)适用的招生专业为: 工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程 等一级学科中所有的二级学科、专业。

考研数学里高数书是每一章都考吗

发之
妒火线
不是的,试卷结构:政治:(马克思主义基本原理概论24分,毛泽东思想和中国特色社会主义理论体系概论30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分)英语:(完型填空10分,阅读A40分,阅读B(即新题型)10分,翻译10分,大作文20分,小作文10分)数学:理工类(数一、数二)经济类(数三)数一:高数56%、线性代数22%、概率统计22%数二:高数78%、线性代数22%、不考概率统计数三:高数56%、线性代数22%、概率统计22%一般情况下,工科类的为数学一和数学二:扩展资料考生注意事项1)考生应在考试前一天到考试地点了解考场有关注意事项。2)考生进入考场,不得携带任何书籍(包括外语词典等工具书)、报纸和稿纸。只准带必需的文具,如钢笔、圆珠笔、绘图仪器、计算尺和电子计算器,或根据招生单位的通知携带所需要的用具。3)考生在每科考前10分钟,凭准考证进入考场,对号入座。入座后将准考证放在桌面右上角,以便检查。考生须随身携带本人居民身份证或工作证、学生证,以备查对。4)除在试卷上规定填写的项目外,不得作其他任何标记,否则试卷作废。5)考生答题一律用蓝色、黑色钢笔或蓝色、黑色圆珠笔书写,字迹要工整、清楚。答题书写在草稿纸上的,一律无效。6)考生对试题内容有疑难时,不得向监考人员询问。如遇试题分发错误和字迹模糊问题,可举手询问。7)迟到15分钟不得入场。考试30分钟后,才准交卷出场。8)考生在考场内必须保持安静,不准吸烟。交卷后,不得在考场附近逗留、谈论。9)考生不准交头接耳,不准偷看、夹带、抄袭或者有意让他人抄袭答题内容,不准接传答案或者交换答卷等。10)考试终了时间一到,考生应立即停止答卷,并将试题和试卷纸装入原信封内经监考人员核查无误后,离开考场,试题、试卷纸和草稿纸不准带走。参考资料来源:百度百科-考研相关常识参考资料来源:百度百科-全国硕士研究生统一招生考试

考研必须要考高数嘛。?

富有天下
囧哥们
考研只有部分专业不考数学,英语和政治是公共课,必考考研不考数学的专业汇总一、不考数学的专业法律硕士、工商管理硕士、汉语言文学、历史、哲学、新闻学、传播学、播音主持、采访编辑、艺术类、图书管理学、劳动与社会保障、法学、社会学、服装设计、工业设计(艺术类)。法律硕士可归为既是精神满足型又日物质实现型的专业,可以为社会弱势群体代言,又可以得到丰厚的物质回报,而且广阔的就业前景正在吸引越来越多的考生报考,竞争是非常激烈的。工商管理硕士是市场经济的产物,培养的是高质量、处于领导地位的职业工商管理人才,使他们掌握生产、财务、金融、营销、经济法规、国际商务等多学科知识和管理技能,有战略规划的眼光和敏锐洞察力,受到了考生的青睐,但昂贵的学费也是让很多考生放弃的原因。二、视学校而定的专业装潢设计、医学类、生物科学、行政管理、心理学(在应用心理学中,需要考统计学)、英语(科技英语有的学校要考)、园林设计(主要看农业学校而定)。近年来心理学专业的考生无疑是越来越多,竞争也越来越激烈,心理学专业初试涵盖了普通心理学、发展与教育心理学、实验心理学、心理统计与测量等学科。英语专业是很多人想要选择的专业,但考研难度大,关键还有对第二外语的要求,这就让很多自认为英语好的考生望而却步,在这里提醒考研想要报考英语专业的考生在复习的初期就要重视第二外语的学习,语言类的学习是一个长期准备的过程。通过对不考数学的专业的介绍,相信很多数学基础不好的考研学子都在想自己报考的专业为什么要考数学呢,实际上这些都是与所报考专业的需求联系的,未来的学习需要数学,那考研初试就一定会考查的。数学的学习需要长期的准备付出才能显示出复习效果的,所以考研的学子一定要尽早投入复习。

大学数二考研中的高数考哪些内容???要详细全面版的

若不闻之
童梦
考试科目:高等数学、线性代数  考试形式和试卷结构  一、试卷满分及考试时间  试卷满分为150分,考试时间为180分钟.  二、答题方式  答题方式为闭卷、笔试.  三、试卷内容结构  高等教学  约78%  线性代数  约22%  四、试卷题型结构  单项选择题 8小题,每小题4分,共32分  填空题 6小题,每小题4分,共24分  解答题(包括证明题) 9小题,共94分高等数学  一、函数、极限、连续  考试内容  函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:  函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质  考试要求  1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.  2.了解函数的有界性、单调性、周期性和奇偶性.  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.  6.掌握极限的性质及四则运算法则.  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.  二、一元函数微分学  考试内容  导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径  考试要求  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.  3.了解高阶导数的概念,会求简单函数的高阶导数.  4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.  5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.  6.掌握用洛必达法则求未定式极限的方法.  7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.  8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.  9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学  考试内容  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用  考试要求  1.理解原函数的概念,理解不定积分和定积分的概念.  2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.  3.会求有理函数、三角函数有理式和简单无理函数的积分.  4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.  5.了解反常积分的概念,会计算反常积分.  6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.  四、多元函数微积分学  考试内容  多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算  考试要求  1.了解多元函数的概念,了解二元函数的几何意义.  2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.  3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.  4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.  5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).  五、常微分方程  考试内容  常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用  考试要求  1.了解微分方程及其阶、解、通解、初始条件和特解等概念.  2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.  3.会用降阶法解下列形式的微分方程: 和 .  4.理解二阶线性微分方程解的性质及解的结构定理.  5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.  6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.  7.会用微分方程解决一些简单的应用问题.  线性代数  一、行列式  考试内容  行列式的概念和基本性质 行列式按行(列)展开定理  考试要求  1.了解行列式的概念,掌握行列式的性质.  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.  二、矩阵  考试内容  矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算  考试要求  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.  4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.  5.了解分块矩阵及其运算.  三、向量  考试内容  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法  考试要求  1.理解 维向量、向量的线性组合与线性表示的概念.  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.  3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.  4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.  5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.  四、线性方程组  考试内容  线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解  考试要求  1.会用克拉默法则.  2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.  3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.  4.理解非齐次线性方程组的解的结构及通解的概念.  5.会用初等行变换求解线性方程组.  五、矩阵的特征值和特征向量  考试内容  矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵  考试要求  1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.  2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.  3.理解实对称矩阵的特征值和特征向量的性质.  六、二次型  考试内容  二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性  考试要求  1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.  2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.  3.理解正定二次型、正定矩阵的概念,并掌握其判别法.那同济版的哪些不考?你逗吗 全国统一卷哪些内容不考??

考研数学如何学好?怎么复习

不杂则清
目欲视色
你好!作为曾经的考研人,关于考研数学的复习,几点建议:必须树立正确的学习心态学习不能速成,这个道理大家心知肚明,但同学们依然在寻找快捷方法的路上不知疲倦。今天就明确告诉大家学习没有速成的方法,只有高效的学习方法让你少走弯路,以最少的时间、精力取得最大的成果。数学尤其如此,盘根错节的概念定理,灵活多变的题目都决定了学习数学是一个长期的过程,并且必须配以正确而又高效的学习方法,才能在考研这一年既学好数学,又不耽误其他科目的学习。学习方法本身分为很多方面:坐姿、书写、草稿纸的使用方法、知识理解、答题、计算、归纳……每一个东西背后都有着博大精深的学问,不能指望一朝一夕就能够吃成胖子!需要特别强调的是:最大的学习方法是规划和工具,也就是时间安排和教材。同样是做一件事情,时间不对效果就会千差万别,工具不对就会吃力不讨好。时间安排同学们能够在各种地方可以看到类似时间规划:基础(2月-6月)、强化(7月-9月)、冲刺(9月-11月)、押题(12月-考试)。这样时间节点的划分从时间和学习的量上来说是比较合理,但是这只是理想状态,实际操作中你有各种事情耽误学习时间、个人学习能力的不足等,如果还是按照这个时间节点学习,对于你来说那就是毁灭性的。实践是检验真理的唯一标准,每一个阶段做什么,学的怎么样,花费多少时间,能否进行下一步的学习,都需要进行一系列的客观评价,从来没有固定的时间规划,一切以个人的实际情况为准。学习工具学习工具是学习效率保证的另一个重要的载体!都说做题,但到底做什么题?有些老师随便拿题目来拼凑,搞了一个题源1000题,还有的老师觉得1000题不够劲爆,又搞了一个接力1800,当然了市面上还有660题、300题……也有的同学是把所有比较知名的书籍全都买了一套,并且坚持刷完的(这类同学最可怕,占用了大量其他科目的学习时间,还不一定能学好),我遇见过很多声称自己把这些都刷完但却没有把数学学好的同学。市面上的书每一个都比较专业全面,但是都存在一个严重的问题——难题、偏题混杂在一起。拿做题来说,书籍中绝大部分都是历年考研真题,很多同学在刚刚开始复习的基础阶段,就大量的做题,忘记了基础的铺垫,在大量难题中磨掉学习兴趣,让自己越学越低效,到了强化冲刺阶段,开始大量做题的时候,却因为基础不牢,出现做题速度慢,看不懂题的尴尬局面,于是开始返工学习基础,浪费了时间精力,与周围学霸一比较心态立即崩溃到想放弃考研。其实完全没有必要,数学并不是这么学好的!一份好的学习工具应该有难度的划分,有重点的学,比如列出个科学的课程表,再根据配套习题册练习,测试卷进行检测,有学习、练习、测评才能算一个合理的搭配。学习评价—最终要的环节妄自菲薄会挫伤学习的积极性,影响复习进度;妄自尊大又会是自己飘飘然而不知所以然,白白浪费学习时间,所以正确的认清自己很重要。当然,自己的学习好坏不能由自己评价,不少同学在学习过程中,总会说到“老师,我已经把XX刷了X遍了,但是……”。我尤其强调,你学习好坏不应该由自己去评价,而应该通过测试卷、模考卷检测之前学过的知识是否已经掌握,然后老师根据对你知识的掌握程度进行评价,决定你是否可以学习下一节内容,这样的评价才能够对自己有一个正确的认知,稳扎稳打,最终取得高分。结语凡事预则立,考研是个耐力活,希望大家在考研这条道路上一路走下去,预祝大家都能看见风雨后的那个彩虹!

考研当中的考试科目高等数学和数学1有什么区别

名誉并焉
呆头鹅
数学一和数学二涉及微积分和线性代数的内容完全一样。只是数学一比数学二多了一个概率论与数理统计。所以如果换了考研专业的话,不必太担心二者在微积分方面也就是高等数学的差别。