欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

高数一考研大纲

容将形之
法演
首先纠正错误,要么考”数学一“(简称数一),要么就考”高等数学“(个别自主命题的院校专业),没有”高数一“之说的!到百度上搜索”考研数学一考试大纲“就会出现好多资源信息的。本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。 总要求 考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。 复习考试内容 一、函数、极限和连续 (一)函数 1.知识范围 (1)函数的概念: 函数的定义 函数的表示法 分段函数 隐函数 (2)函数的性质: 单调性 奇偶性 有界性 周期性 (3)反函数: 反函数的定义 反函数的图像 (4)基本初等函数: 幂函数 指数函数 对数函数 三角函数 反三角函数 (5)函数的四则运算与复合运算 (6)初等函数 2.要求 (1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。 (2)理解函数的单调性、奇偶性、有界性和周期性。 (3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。 (4)熟练掌握函数的四则运算与复合运算。 (5)掌握基本初等函数的性质及其图像。 (6)了解初等函数的概念。 (7)会建立简单实际问题的函数关系式。 (二)极限 1.知识范围 (1)数列极限的概念:数列 数列极限的定义 (2)数列极限的性质:唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理 (3)函数极限的概念:函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义 (4)函数极限的性质:唯一性 四则运算法则 夹通定理 (5)无穷小量与无穷大量: 无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶 (6)两个重要极限 2.要求 (1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解极限的有关性质,掌握极限的四则运算法则。 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (4)熟练掌握用两个重要极限求极限的方法。 (三)连续 1.知识范围 (1)函数连续的概念:函数在一点处连续的定义 左、右连续 函数在一点处连续的充分必要条件函数的间断点及其分类 (2)函数在一点处连续的性质:连续函数的四则运算 复合函数的连续性反函数的连续性 (3)闭区间上连续函数的性质:有界性定理 最大值与最小值定理 介值定理(包括零点定理) (4)初等函数的连续性 2.要求 (1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。 (2)会求函数的间断点及确定其类型。 (3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。 (4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。 二、一元函数微分学 (一)导数与微分 1.知识范围 (1)导数概念:导数的定义 左导数与右导数 函数在一点处可导的充分必要条件导数的几何意义与物理意义 可导与连续的关系 (2)求导法则与导数的基本公式:导数的四则运算 反函数的导数 导数的基本公式 (3)求导方法:复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法求分段函数的导数 (4)高阶导数:高阶导数的定义 高阶导数的计算 (5)微分:微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性 2.要求 (1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。 (2)会求曲线上一点处的切线方程与法线方程。 (3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。 (4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。 (5)理解高阶导数的概念,会求简单函数的 阶导数。 (6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。 (二)微分中值定理及导数的应用 1.知识范围 (1)微分中值定理:罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理 (2)洛必达(L’Hospital)法则 (3)函数增减性的判定法 (4)函数的极值与极值点 最大值与最小值 (5)曲线的凹凸性、拐点 (6)曲线的水平渐近线与铅直渐近线 2.要求 (1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。 (2)熟练掌握用洛必达法则求“ ”、“ ”、“ ”、“ ”、“ ”、“ ”、“ ”型未定式的极限的方法。 (3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。 (4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。 (5)会判断曲线的凹凸性,会求曲线的拐点。 (6)会求曲线的水平渐近线与铅直渐近线。 (7)会作出简单函数的图形。 三、一元函数积分学 (一)不定积分 1.知识范围 (1)不定积分:原函数与不定积分的定义 原函数存在定理 不定积分的性质 (2)基本积分公式 (3)换元积分法:第一换元法(凑微分法) 第二换元法 (4)分部积分法 (5)一些简单有理函数的积分 2.要求 (1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。 (2)熟练掌握不定积分的基本公式。 (3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。 (4)熟练掌握不定积分的分部积分法。 (5)会求简单有理函数的不定积分。 (二)定积分 1.知识范围 (1)定积分的概念:定积分的定义及其几何意义 可积条件 (2)定积分的性质 (3)定积分的计算:变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法 分部积分法 (4)无穷区间的广义积分 (5)定积分的应用:平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功 2.要求 (1)理解定积分的概念及其几何意义,了解函数可积的条件。 (2)掌握定积分的基本性质。 (3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。 (4)熟练掌握牛顿—莱布尼茨公式。 (5)掌握定积分的换元积分法与分部积分法。 (6)理解无穷区间的广义积分的概念,掌握其计算方法。 (7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。 会用定积分求沿直线运动时变力所作的功。 四、向量代数与空间解析几何 (一)向量代数 1.知识范围 (1)向量的概念:向量的定义 向量的模 单位向量 向量在坐标轴上的投影向量的坐标表示法 向量的方向余弦 (2)向量的线性运算:向量的加法 向量的减法 向量的数乘 (3)向量的数量积:二向量的夹角 二向量垂直的充分必要条件 (4)二向量的向量积 二向量平行的充分必要条件 2.要求 (1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。 (2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。 (3)熟练掌握二向量平行、垂直的充分必要条件。 (二)平面与直线 1.知识范围 (1)常见的平面方程:点法式方程 一般式方程 (2)两平面的位置关系(平行、垂直和斜交) (3)点到平面的距离 (4)空间直线方程:标准式方程(又称对称式方程或点向式方程)一般式方程参数式方程 (5)两直线的位置关系(平行、垂直) (6)直线与平面的位置关系(平行、垂直和直线在平面上) 2.要求 (1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。 (2)会求点到平面的距离。 (3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。 (4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。 (三)简单的二次曲面 1.知识范围:球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面 2.要求:了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。 五、多元函数微积分学 (一)多元函数微分学 1.知识范围 (1)多元函数:多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念 (2)偏导数与全微分:偏导数 全微分 二阶偏导数 (3)复合函数的偏导数 (4)隐函数的偏导数 (5)二元函数的无条件极值与条件极值 2.要求 (1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。 (2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。 (3)掌握二元函数的一、二阶偏导数计算方法。 (4)掌握复合函数一阶偏导数的求法。 (5)会求二元函数的全微分。 (6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。 (7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。 (二)二重积分 1.知识范围 (1)二重积分的概念:二重积分的定义二重积分的几何意义 (2)二重积分的性质 (3)二重积分的计算 (4)二重积分的应用 2.要求 (1)理解二重积分的概念及其性质。 (2)掌握二重积分在直角坐标系及极坐标系下的计算方法。 (3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。 六、无穷级数 (一)数项级数 1.知识范围 (1)数项级数:数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件 (2)正项级数收敛性的判别法:比较判别法 比值判别法 (3)任意项级数:交错级数 绝对收敛 条件收敛 莱布尼茨判别法 2.要求(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。 (2)掌握正项级数的比值判别法。会用正项级数的比较判别法。 (3)掌握几何级数 、调和级数 与 级数 的收敛性。 (4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。 (二)幂级数 1.知识范围 (1)幂级数的概念:收敛半径 收敛区间 (2)幂级数的基本性质 (3)将简单的初等函数展开为幂级数 2.要求 (1)了解幂级数的概念。 (2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。 (3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。 (4)会运用 的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为或 的幂级数。 七、常微分方程 (一)一阶微分方程 1.知识范围 (1)微分方程的概念:微分方程的定义 阶 解 通解 初始条件 特解 (2)可分离变量的方程 (3)一阶线性方程 2.要求 (1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。 (2)掌握可分离变量方程的解法。 (3)掌握一阶线性方程的解法。 (二)可降价方程 1.知识范围 (1) 型方程 (2) 型方程 2.要求 (1)会用降阶法解 型方程。 (2)会用降阶法解 型方程。 (三)二阶线性微分方程 1.知识范围 (1)二阶线性微分方程解的结构 (2)二阶常系数齐次线性微分方程 (3)二阶常系数非齐次线性微分方程 2.要求 (1)了解二阶线性微分方程解的结构。 (2)掌握二阶常系数齐次线性微分方程的解法。 (3)掌握二阶常系数非齐次线性微分方程的解法(自由项限定为 ,其中为 的 次多项式, 为实常数; ,其中 为实常数)。 考试形式及试卷结构 试卷总分:150分 考试时间:150分钟 考试方式:闭卷,笔试 试卷内容比例: 函数、极限和连续 约15% 一元函数微分学 约25% 一元函数积分学 约20% 多元函数微积分(含向量代数与空间解析几何) 约20% 无穷级数 约10% 常微分方程 约10% 试卷题型比例: 选择题 约15% 填空题 约25% 解答题 约60% 试题难易比例: 容易题 约30% 中等难度题 约50% 较难题 约20%

2020考研数学二大纲和数一大纲有什么区别?

月咏
大男孩
数一和数二的差别挺大的高数下册书数二只考查第一二章而且第一章只有部分几节然后就是最后一章的常微分方程的几节线性代数数一和数二考的差不多只不过数二不考空间向量大纲一般作用不大决定考数几了把课本上好好复习一遍后买本李永乐的考研数学复习全书至少做两遍就可以这本书分数一和数二它注重基础很适合考研复习看看下面这俩本书最受欢迎的一是《数学复习全书-李永乐》评价★★★★★5分李永乐复习全书无论从基础、技巧方面来说都不逊色于陈文灯复习全书。此书比较重基础,解题方法也都是大家比较能接受的(属于一目了然)思路也很清晰。对基础一般的同学比较实用二是《陈文灯复习全书》评价★★★★☆4.5分陈文灯的全书比较注重技巧。有不少类型的题都比较技巧化。个人觉得考研数学对于技巧的要求不是那么高,更多的题目都是在基础之上稍微用点技巧。但此书的内容还是比较全面,尤其陈文灯的“中值定理”篇章写的比较好,是这本书的一个亮点。做至少两遍的话差不多

2020考研数学一大纲原文(PDF版)

王未之见
杨贵妃
去百度文库,查看完整内容>内容来自用户:文都图书来源:文都教育高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.考试要求四、向量代数和空间解析几何4.考试要求8.8.2.考试要求2.

考研数学中 有的学校考 高等数学(B),这个指的什么意思,教材是什么,考纲是什么?请指教,谢谢

君子
何有
“高等数学(B)”考试大纲 试点高校网络教育部分公共基础课全国统一考试,旨在遵循网络教育应用型人才的培养目标,针对从业人员继续教育的特点,重在检验学生掌握基础知识的水平及应用能力,全面提高现代远程高等学历教育的教学质量。“高等数学”课程是现代远程教育试点高校网络教育实行全国统一考试的部分公共基础课之一。该课程的考试是一种基础水平检测性考试,考试合格者应达到与成人高等教育本科相应的高等数学课程要求的水平。 考试对象 教育部批准的现代远程教育试点高校网络教育学院和中央广播电视大学“人才培养模式改革和开放教育试点”项目中自2004年3月1日(含3月1日)以后入学的本科层次学历教育的学生,应参加网络教育部分公共基础课全国统一考试。《高等数学(B)》考试大纲适用于除数学类专业以外的其它理工类专业的高中起点本科学生。其它非文史法医教育艺术类专业的高中起点本科学生也可报考本科目。 考试目标 高等数学是高等院校理工科及经济管理等学科学生必修的基础课程之一,是培养学生运算能力、抽象概括问题的能力、逻辑推理能力、综合运用所学知识分析和解决问题能力的课程,是学生学习后继课程和进一步获得近代科学技术知识的必备基础。 本课程的考试目标是考查学生的高等数学的基本概念、基本理论、基本方法和常用的运算技能,并以此检测学生分析问题、解决问题的能力。  本大纲对内容的要求由低到高。对概念和理论分为“了解、理解”两个层次,对方法和运算分为“会、掌握、熟练掌握”三个层次。考试内容与要求 一、函数、极限、连续 (一)函数 1.考试内容 函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1) 理解函数的概念。掌握函数的表示法,会求函数的定义域。(2) 了解函数的有界性、奇偶性、周期性、单调性。(3) 了解分段函数、反函数、复合函数、隐函数的概念。(4) 掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限:2.考试要求 (1) 理解数列及函数极限的概念(对极限定义中的“ ”,“ ”等形式表述不作要求)。(2) 会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。(3) 了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。(4) 理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。(5) 掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念 左连续与右连续 函数的间断点 连续函数的四则运算法则复合函数的连续性 反函数的连续性 初等函数的连续性 闭区间上连续函数的性质(最大值、最小值定理,零点定理) 2.考试要求 (1) 理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。(2) 掌握连续函数的四则运算法则。(3) 了解复合函数、反函数和初等函数的连续性。 (4) 了解闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 二、一元函数微分学 (一)导数与微分 1.考试内容 导数与微分的定义,左导数与右导数,导数的几何意义,函数的可导性、可微性与连续性的关系,导数与微分的四则运算,导数与微分的基本公式,复合函数的求导法,隐函数的求导法,高阶导数。 2.考试要求 (1) 理解导数的概念及其几何意义。了解左导数与右导数的概念。(2) 了解函数可导性、可微性与连续性的关系。(3) 会求平面曲线上一点处的切线方程和法线方程。(4) 熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法。(5) 会求隐函数的一阶导数。(6) 了解高阶导数的概念。会求函数的二阶导数。(7) 了解微分的概念。会求函数的微分。 (二)微分中值定理及导数的应用 1.考试内容 微分中值定理(罗尔定理、拉格朗日中值定理),洛必达法则,函数单调性的判别,函数的极值,函数的最大、最小值函数图形的凹凸性与拐点。 2.考试要求 (1) 了解罗尔定理、拉格朗日中值定理。(2) 熟练掌握用洛必达法则求“ ”、“ ”、“ ”、“ ”型未定式极限的方法。(3) 掌握利用导数判断函数单调性的方法。(4) 理解函数极值的概念。掌握求函数的极值与最大、最小值的方法,并会求解简单的应用问题。(5) 会判断平面曲线的凹凸性。会求平面曲线的拐点。 三、 一元函数积分学 (一)不定积分 1.考试内容 原函数与不定积分的概念,不定积分的基本性质,不定积分的基本公式,不定积分的换元积分法与分部积分法。 2.考试要求 (1) 理解原函数与不定积分的概念。掌握不定积分的基本性质。(2) 熟练掌握不定积分的基本公式。(3) 熟练掌握不定积分的第一类换元法,掌握不定积分的第二类换元法(仅限于三角代换与简单的根式代换)。(4) 熟练掌握不定积分的分部积分法。 (二)定积分 1.考试内容 定积分的概念与基本性质,定积分的几何意义,变上限积分定义的函数及其导数,牛顿-莱布尼茨公式,定积分的换元法与分部积分法,定积分的应用(平面图形的面积、旋转体的体积)。 2.考试要求 (1) 理解定积分的概念。了解定积分的几何意义。掌握定积分的基本性质。(2) 理解变上限积分作为其上限的函数的含义,会求这类函数的导数。(3) 掌握牛顿-莱布尼茨公式。(4) 熟练掌握定积分的换元法与分部积分法。(5) 会应用定积分计算平面图形的面积和旋转体的体积。 四、多元函数微积分 (一)多元函数微分学 1.考试内容 多元函数的概念,二元函数的极限和连续性,一阶偏导数与全微分,复合函数与隐函数的求导法,二阶偏导数,二元函数的极值。 2.考试要求 (1) 了解多元函数的概念。了解二元函数的极限和连续性的概念。(2) 理解偏导数的概念。了解全微分的概念。(3) 会求二元函数的一阶、二阶偏导数,会求二元函数的全微分。(4) 掌握复合函数一阶偏导数的求法。(5) 会求由方程 所确定的隐函数 的一阶偏导数。(6) 了解二元函数极值存在的必要条件、充分条件。会求二元函数的极值。 (二)二重积分 1.考试内容 二重积分的概念与性质,二重积分的计算法。 2.考试要求 (1) 了解二重积分的概念与性质。(2) 掌握在直角坐标系下计算二重积分的方法,会交换积分次序。(3) 会利用极坐标系计算二重积分。 五、常微分方程 1.考试内容 常微分方程的基本概念,变量可分离的微分方程,齐次微分方程,一阶线性微分方程。 2.考试要求 (1) 了解微分方程及其阶、解、通解、初始条件和特解的概念。(2) 掌握变量可分离的微分方程、一阶线性微分方程的求解方法。(3) 会解齐次微分方程。 试卷结构与题型一、试卷分数 满分100分。 二、试题类型 单项选择题、填空题和解答题。单项选择题的形式为四选一,即在每题的四个备选答案中选出一个正确答案。填空题只要求直接填写结果,不必写出计算过程和推理过程。解答题包括计算题、应用题和证明题等,解答题要求写出文字说明,演算步骤或推证过程。 三、题型比例 单项选择题约20%,填空题约30%,解答题约50%(其中证明题不超过5%)。 (一) 试题难度 试题按其难度分为容易题、中等题和较难题,其分值比例约为4∶4∶2。 (二) 试卷内容比例 一元函数微积分(含函数与极限)约65%,多元函数微积分约25%,常微分方程约10%。 考试方式与时间 考试方式:闭卷笔试(不准使用计算器)。考试时间:120分钟。

考研301数学一考试大纲

守一
允師
一、高等数学(一)函数极限连续  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.  6.掌握极限的性质及四则运算法则.  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.(二)一元函数微分学 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当f''(x)>0 时,f(x) 的图形是凹的;当f"(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.(三)一元函数积分学考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值. (四)向量代数和空间解析几何考试要求  1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念. 8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程. (五)多元函数微分学 考试要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质. 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,会求多元隐函数的偏导数. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题. (六)多元函数积分学考试要求 1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法. 5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.了解散度与旋度的概念,并会计算. 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等). (七)无穷级数考试要求 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件. 2.掌握几何级数与 级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 4.掌握交错级数的莱布尼茨判别法. 5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法. 8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和. 9.了解函数展开为泰勒级数的充分必要条件. 10.掌握 , , , 及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数. 11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式. (八)常微分方程考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程. 4.会用降阶法解下列形式的微分方程: . 5.理解线性微分方程解的性质及解的结构. 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程. 8.会解欧拉方程. 9.会用微分方程解决一些简单的应用问题.二、线性代数(一)行列式 考试内容: 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求: 1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.(二)矩阵 考试内容: 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算 考试要求: 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.(三)向量 考试内容:  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质  考试要求:  1.理解n维向量、向量的线性组合与线性表示的概念.  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系 5.了解n维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵.  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质.(四)线性方程组 考试内容:  线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解  考试要求  l.会用克莱姆法则.  2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.  3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.  4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法.(五)矩阵的特征值及特征向量 考试内容:  矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵  考试要求:  1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.(六)二次型 考试内容:  二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性  考试要求:  1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.  2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法三、概率论与数理统计(一)随机事件和概率 考试内容:  随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求:  1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.  2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.  3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.(二)随机变量及其分布 考试内容:  随机变量 随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布  考试要求:1.理解随机变量的概念.理解分布函数  的概念及性质.会计算与随机变量相联系的事件的概率.  2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.  3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.  4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布 及其应用,其中参数为λ(λ>0)的指数分布的概率密度为 5.会求随机变量函数的分布.(三)多维随机变量及其分布 考试内容  多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度  随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布  考试要求  1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.  2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.  4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. (四)随机变量的数字特征 考试内容  随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质 考试要求  1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征  2.会求随机变量函数的数学期望. (五)大数定律和中心极限定理 考试内容  切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理  考试要求  1.了解切比雪夫不等式.  2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .  3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) . (六)数理统计的基本概念 考试内容  总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布  考试要求  1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:  2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算. 3.了解正态总体的常用抽样分布.(七)参数估计 考试内容  点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法. 3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性. 4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.(八)假设检验  考试内容  显著性检验假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求  1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.  2.掌握单个及两个正态总体的均值和方差的假设检验

2020考研数学一大纲原文(PDF版)

心心相印
儿歌
去百度文库,查看完整内容>内容来自用户:文都图书来源:文都教育高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.考试要求四、向量代数和空间解析几何4.考试要求8.8.2.考试要求2.

考研数学考的是什么内容?

老唐头
借个火
考研时的知识点基本上都是高数、线代与概率论的知识点。一般统考不会超过课本知识,但是难度比课本习题难度大很多。一般可以参考每年的数学考研大纲。数学一考研数学内容:高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数。一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质四、线性方程组考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验二、随机变量及其分布考试内容:随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布四、随机变量的数字特征考试内容:随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质五、大数定律和中心极限定理考试内容:切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计八、假设检验考试内容:显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验扩展资料:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2.授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1.经济学门类的各一级学科。2.管理学门类中的工商管理、农林经济管理一级学科。3.授管理学学位的管理科学与工程一级学科。参考资料:百度百科——数学考研大纲

考研数学考的是什么内容?

昌寓骖乘
此八疵者
考研时的知识点基本上都是高数、线代与概率论的知识点。一般统考不会超过课本知识,但是难度比课本习题难度大很多。一般可以参考每年的数学考研大纲。数学一考研数学内容:高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数。一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质四、线性方程组考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验二、随机变量及其分布考试内容:随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布四、随机变量的数字特征考试内容:随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质五、大数定律和中心极限定理考试内容:切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计八、假设检验考试内容:显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验扩展资料:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2.授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1.经济学门类的各一级学科。2.管理学门类中的工商管理、农林经济管理一级学科。3.授管理学学位的管理科学与工程一级学科。参考资料:百度百科——数学考研大纲

考研数学三高等数学考哪些内容

痛痛快快
玻璃墙
考试科目:微积分.线性代数.概率论与数理统计试卷内容结构:微积分 56% 线性代数 22% 概率论与数理统计 22%微积分 一、函数、极限、连续二、一元函数微分三、一元函数积分学四、多元函数微积分学线性代数:分为6个部分:行列式,矩阵,向量,线性方程组,矩阵的特征值和特征向量,二次型。线性代数整体感很强,每一章之间联系紧密,相互交织的考点很多,很容易就可以出线代的综合题,但是线代又相对高数和概率论最简单的,因为概念虽然多,但是并不难,所以很容易就能学的好,运用好,对于学习方法的话,主要以对于概念的理解要到位,尤其对秩的概念与运用,线性方程求解和特征向量特征矩阵这三个方面重点关注概率部分: 1、全概率公式与贝叶斯公式2、互不相容与互不相3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。4、连续函数随机变量函数的概率密度5、二维随机变量分布律 6、二维随机变量函数的分布7、数学期望