欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研高数用哪个版本好一点?

王乃悦之
老流氓
考研高数版本:同济大学编著的高等教育出版社的《高等数学》4、5、6版都可以,同济版的《线性代数》,浙江3365643534大学盛骤编著高等教育出版社的《概率论与数理统计》。考研规划:一、时间安排:冲刺=12月前(真题模拟)+12月进行考前巩固(一)、12月前做真题——30年考研数学真题反复做,2010年之前的按科目来做,不会的题标记,以便下次再做。2011年之后的(含2011年),按套卷来做。做真题的过程中,遇到不会的概念定义,要及时回归课本,去看课本的基本定义概念,这个过程特别重要。就像练武,回归课本,弄懂概念,就是打通任督二脉,万变不离其中,概念懂了,什么题都难不倒。1、真题和模拟题该如何取舍真题是最经典的,如果复习时间紧迫,那就放弃模拟,就做真题。模拟题是辅助,选择好的模拟题,不好的有错题,会误导,这样的模拟题不如不做,学有余力的同学,真题做好的基础上,做4套左右模拟题就足够了。2、回归课本12月份之前,遇到不会的,不理解的定义定理,一定要回归课本;考研数学重基础轻技巧,因此,做题的时候,尽量选择用基础定义来做,一道题会一种方法即可,切忌一题多做,这个阶段,时间太紧,没有足够的时间一题多做。(二)、12月份后进入12月——距离考试还有20多天。这段时间,每天上午的时间必须拿来做数学套题。8:30开始,11:30结束,跟着考试时间的节奏来,练自己的做题速度和题感。这个阶段的套题,可以是真题,可以是模拟题,但模拟题还是要选择质量好的。而且模拟题的分数不作为参考分数,模拟题大多水平不如真题,对完答案,考多考少,都淡定,真题和模拟题完全不一样。最后20天,还有个重要的环节,继续回归课本,高数里边的,一些低频易考知识点,就是这个阶段冲击,曲率、方向导数、差分方程,这些都是记公式就能那分的题,一定要再考前记一记,喝前摇一摇。二、说说真正上战场的战术在冲刺阶段就把状态调成跟考研当天一样,上午数学,培养自己上午做数学的感觉。数学考试计算量大,所以有部分同学,做完就没时间检查了,不要惊慌,数学检查和其他科目不一样,还是要算的,还是需要时间,3个小时,23道题,最后留给我们的检查时间很少,所以不能检查的也不要气馁。特别说一下做题顺序,试卷拿到手之后,按照顺序做题,先选择再填空,最后大题,但是遇到不会做的,考虑了一会,没有思路的,果断下一个题,等所有题都做完了,回头再来做这种题。这个时候,有做其他题的经验,说不定就会做了。还有就是计算过程,答题纸没那么大,一般是需要写在草稿纸上算的,草稿纸是考场上发的,不够用的,早点跟监考老师举手要。根据地区不同,有的地区老师可能就不给你了,所以鉴于这个原因,建议大家多打几张准考证,用来算题。最后,数学这门学科,有意思的地方在于,当你认为自己死去活来的时候,坚持下去,你就上了一层楼。好好对数学,最后数学也会好好对你,150分的满分,这些就是你提分的关键。

考研数学应该用什么参考书

何相孰也
动物园
A.基础阶袭段:2019年6月底前各科目课本 +《张宇带你学高等数学·同济七版(上册)》《张宇带你学高等数学·同济七版(下册)》《张宇带你学线性代数·同济六版》《张宇带你学概率论与数理统计·浙大四版》另:《张宇考研数学题源探析经典1000题》A组、(附加)“36讲”简单题及例题做完B.强化阶段:2019年7月-8月底“36讲”+《张宇考研数学题源探析经典1000题》B组“36讲”包含:《2020考研张宇高等数学18讲》《2020考研张宇线性代数9讲》《2020考研张宇概率论与数理统计9讲》提分阶段:2019年9月-10月底《2020张宇考研数学真题大全解》+《张宇考研数学题源探析经典1000题》C组+《张宇考研数学闭关修炼180题》考前阶段:2019年11月-12月中下旬《2020张宇考研数学命题人终极预测8套卷》+《2020张宇考研数学最后4套卷》

前辈们考研高数看第一遍书用了多久?

好浪漫
君有忧色
我记得我当时是高数+线代+概率用了四个月时间。高数好像用了两个月。个人内感觉高数书上的东西多,杂容,而且很多都不是考试直接需要的,看了反而浪费时间。我是建议你不如买本复习全书看,复习全书看不懂的话再回到高数书上找找对应部分,再好好理解一下。这样效率高,而且针对性也高。数学这种东西,光看一遍两遍根本是记不住的。你会发现,看了后面忘前面。所以我建议你不妨做题找感觉。现在如果做2011年我们考研用的:李永乐400题,陈文灯15套。。做完了这些之后,你就会觉得数学感觉来了,那些公式定理记住了。

考研 301高数一 具体教材

室无空虚
到大学附近任何一家书店都能买到。 数学一定要用同济的,现在是第五版回了,其实前几个版本答都可以。 推荐你用四五六版数一用同济的,有上下两册,绿色的,很好找啊 其实不买教材直接用复习资料也是可以的,比如陈文灯的和李永乐的都挺好,知识点都有讲到的.其实数一数二数三参考教材都一样。辅导教材推荐李永乐,李正元的复习全书另外再买一本真题就够了到大学附近任何一家书店都能买到。数学一定要用同济的,现在是第五版了,其实前几个版本都可以。

考研数学二大纲对应《高等数学》和《线性代数》哪几章?

更化
访问者
教材不同,对应第几章也是不同的。主要内容为:高等数学:函数、极限、连续 一元函3264643836数微分学 一元函数积分学  多元函数微积分学(包含二重积分) 常微分方程线性代数:行列式 矩阵 向量 线性方程组 矩阵的特征值和特征向量 二次型详细大纲如下,请认真研读。2011年考研数学二大纲考试科目  高等数学、线性代数 考试形式和试卷结构  1、试卷满分及考试时间   试卷满分为150分,考试时间为180分钟。   2、答题方式   答题方式为闭卷、笔试。   3、试卷内容结构   高等数学 78%   线性代数 22%   4、试卷题型结构   试卷题型结构为:   单项选择题选题 8小题,每题4分,共32分   填空题 6小题,每题4分,共24分   解答题(包括证明题) 9小题,共94分 考试内容之高等数学  函数、极限、连续   考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:   函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质   考试要求   1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.   2. 了解函数的有界性、单调性、周期性和奇偶性.   3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念   4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.   5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.   6. 掌握极限的性质及四则运算法则   7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.   8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.   9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.   10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.   一元函数微分学   考试要求   1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.   2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.   3. 了解高阶导数的概念,会求简单函数的高阶导数.   4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.   5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.   6. 掌握用洛必达法刚求未定式极限的方法.   7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.   8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.   9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.   一元函数积分学   考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用   考试要求   1. 理解原函数的概念,理解不定积分和定积分的概念.   2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.   3. 会求有理函数、三角函数有理式和简单无理函数的积分.   4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.   5. 了解反常积分的概念,会计算反常积分.   6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.   多元函数微积分学   考试要求   1. 了解多元函数的概念,了解二元函数的几何意义.   2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.   3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.   4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.   5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).   常微分方程   考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用   考试要求   1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.   2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程   3. 会用降阶法解下列形式的微分方程: , 和 .   4. 理解二阶线性微分方程解的性质及解的结构定理.   5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.   6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.   7. 会用微分方程解决一些简单的应用问题. 考试内容之线性代数  行列式   考试内容:行列式的概念和基本性质 行列式按行(列)展开定理   考试要求   1.了解行列式的概念,掌握行列式的性质.   2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.   矩阵   考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算   考试要求   1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.   2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.   3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.   4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.   向量   考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法   考试要求   1.理解n维向量、向量的线性组合与线性表示的概念.   2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.   3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.   4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系   5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.   线性方程组   考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解   考试要求   1.会用克莱姆法则.   2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.   3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.   4.理解非齐次线性方程组的解的结构及通解的概念.   5.会用初等行变换求解线性方程组.   矩阵的特征值和特征向量   考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵   考试要求   1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.   2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.   3.理解实对称矩阵的特征值和特征向量的性质.   二次型   考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性   考试要求   1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.   2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.   3.理解正定二次型、正定矩阵的概念,并掌握其判别法.高等数学是高教5版,线性代数是同济5版同济的教材公认不错,用的最广泛。最新的是六版。

全国统考的考研数学一二三教材是否一样

京韵情
成人记
是的,都是同济大学出版的。只是数一数二数三的上课的重点不一样而已

考研高数是不是数一数二数三的课本都是一样的就是范围不同啊?

金正日
飞升
是的。1、须使用数学一3431363531的招生专业工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术等等。2、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。3、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。4、须使用数学三的招生专业经济学门类的各一级学科。管理学门类中的工商管理、农林经济管理一级学科。授管理学学位的管理科学与工程一级学科。扩展资料:2019考研数学一二三公共考点:重难点汇总:一、函数、极限、连续二、一元函数微分学三、一元函数积分学四、多元函数微积分学五、常微分方程六、无穷级数(数一、三)参考资料来源:百度百科-考研数学参考资料来源:研招网-2019考研数学一二三公共考点:重难点汇总(上)参考资料来源:研招网-2019考研数学一二三公共考点:重难点汇总(下)

考研数三看什么教材

乡愿
梦千年
考研数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,内掌握表示法,会建立应容用问题的函数关系。考研数学三教材推荐:①《高等数学》(上、下):高等教育出版社第6版同济大学数学系②《工程数学线性代数》(第五版)同济大学数学系高等教育出版社③《概率论与数理统计》:高等教育出版社浙大第4版盛骤(二)教材辅导书:①同济大学数学系:高等数学习题全解指南(上下册)高等教育出版社②工程数学线性代数(第五版)同济大学数学系高等教育出版社辅导书③概率论与数理统计:高等教育出版社浙大第4版盛骤拓展资料:针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。参考资料:考研数学百度百科

考研高数二用什么教材比较好?

张骞
祭父
同济五版的,上下册都要.在买它配套的<<高等数学辅导>>,暂时这么多就可以了,在提醒一下,要在你大三下学期结束前看完哦,要不就来不急在暑假里强化训练哦,第一遍不求快,但求细,要真正的搞懂,弄通.祝你成功.我考研的时候也是考的数学2,用的教材是<<高等数学>>第五版(分上下2册),高等教育出版社出版的说辅导资料的话,推荐李永乐专为数学2编的考研辅导书,陈文登的偏难了(如果你数学基础好,又想拿高分可以考虑一下)