欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

18考研丨考研高等数学复习要点有哪些

敲门
我们18已经考完了,你们准确说是19届考研,今年你们会简单点,但现在简单也是思路简单,计算量永远是不会小的,保证好基础,和会算的题尽可能不出错,学到后面,发现跟不上的还是计算能力,计算能力,计算能力,重要事说三遍,会的题尽量规定时间内一遍算对。

考研高数用什么资料书比较好,,就解答

蝴蝶舞
不多仁恩
对于考研数学:这个阶段是打实基础的阶段,以数学教材为主吧,高数是一大块,概率和线代相对简单一些。多把时间往高数上面倾斜一下吧,里面占的分数也多一些。多看教材,就像第一遍学的一样,把教材的知识点,定理证明什么的都好好理解一下,最好配合上去年的数学考研大纲,有所侧重。对于课后习题,不建议全做,挑有代表性的做一部分,其他的想想思路配合答案书看看就可以了,全做太浪费时间了,只要把方式方法解题技巧掌握了就可以了。之后就是用复习全书、660什么的,然后就是真题了。把时间和进度好好规划一下吧。慢慢的学着,心不能急。给你贴一个参考书目总结,我从别人那里借鉴过来的。希望对你有帮助。想好了自己是考数学几,望采纳1、李永乐李正元《数学复习全书》*****,同样效用的有陈文登的《数学复习指南》****,不过文登的重技巧,精华在微积分,永乐的重基础,而且从近三年的考试来看,全书更加适合考研,文登的有部分内容超纲。如果已经买了文登那本复习指南,强烈推荐再买本永乐的《线性代数辅导讲义》*****,因为永乐的线代深入浅出,非常好,可以弥补文登的线代那部分的不足。想考更高分的战友可以两本都选(个人认为全书是必备的); 2、数学基础过关660题*****,不是必备,但是在前期作为打基础的练习非常不错。 3、历年真题。最好的有两个版本,一个是永乐的《历年试题解析》*****,好处在于按章节分类,题目后面还有评注,历年试卷放前面可以自测;另一个西安交大的武忠祥的《历年数学考研试题研究》****,好处在于按章节分类,还有考试考点分析和分类统计。每章后面有同步练习。如果买不到这两本,其他任何版本的真题都一样***。还有一个推荐大家买的就是可以单买一本聚焦FOCUS的考研真题集*****,性价比极高,只要2元,多买两本都不会亏,因为真题多做几遍分数就多长几分。详解就算了。 4、《数学最后冲刺超越135分》*****;或者文登的《题型集粹与练习题集》****作为最后冲刺阶段的查漏补缺。 5、李永乐《数学全真模拟经典400题》至少做三遍*****。其他的模拟题不要多买,虽然说是题海战术,但是太多了浪费,而且不做影响心情。恩波的模拟题***,考试虫的模拟题***,可以下载到合工大的题目最好****,跟真题比较接近 6、另外比较好的辅导书有《考研数学单项选择题解题方法与技巧》****和概率论与数理统计讲义(提高篇)****。有条件的可以下载新东方的网络课件,这个课件已经足够了,最好能下到永乐05年的线性代数讲课*****,非常经典,还有06费允杰的概率讲课也非常经典*****。其他田根宝的线代和概率课件就不用了,不推荐;还有文登的冲刺讲课也没有必要,辅导班就更加不用上了。原则上是能自己看书就不要课件,因为听课非常浪费时间。实在基础不行就听课吧。 记住一点,好的书可以让你更加快捷的到达终点。但是书不在多,一定要多做几遍并且总结方法。课件是非常浪费时间的,能看书就不要使用课件。

请推荐关于考研数学一的复习资料

意也
此下德也
你好。其实推荐的教材都差不多 ,关键是选本好的参考书反复研究,从课本出发,基础牢固后多多练习,数学都是练出来的,尤其考研数学更是没有绝对难度,只要你复习到位,一定没有问题。 高数:同济5版 线代:同济5版 概率:浙大三版 资料推荐: 1、李永乐考研数学1-数学复习全书+习题全解() 2、《李永乐考研数学历年试题解析(数学1)真题》 3、李永乐经典四百题考研本身就是基础的东西,要拿高分就必须基础得硬,没必要一味追求难题,复习必须全面,很多细节的东西都很容易考,比如书上的定义,概念之类的。。。你做下真题就知道了 一句话,基本的东西必须抓好抓全! 考研贵在决心与毅力,无论结果如何,只要你一路走来,必定受益终生 加油 !

考研高数怎么复习?

缓急相摩
公益心
给你个小建议,希望对你有所帮助:首先,需要对自己的高数水平做个简单的评估,看自己是处于哪种状态;有了简单的认识,才好对照做个详细的学习计划,上辅导班其实个人感觉更像是一种梳理,如果基础很差需要从0开始的话,是不适合直接上辅导班的,可以先把课本的东西自学下,再报辅导班学习,类似于做了很多年的海天教育之类的都不错,会有自己的教学计划和方法。但考研前备战时的心态也很重要,身边很多同学在找工作,就业,考公务员,一定要有一颗坚定的心,两耳不闻窗外事才行。最后,希望对你有帮助,能够取得好成绩。

考研高等数学和数三是一样吗?都复习什么资料?谢谢!

非圣人也
源源不断
是这样的 因为考研专业 对数学掌握的要求不一样 而有了数学一 数学二 和数学三 以前还有数学四和五的 现在都规到数学三了 高等数学是教材 目前大多数用的都是同济第五版的高等数学 而数学一和数学三 的区别 就在于 高等数学里面 有些章节的要求不一样 有些知识点 数学三不用考的 而且数学一的难度要大点 最后 数学一和数学三 对线性代数和概率论统计 这两本教材考试内容基本差不多的 你可以买一本 陈文灯的或者李永乐的 考研基础复习高等数学就是一本书,数三是指微积分,线性代数。概率论。

考研高等数学的复习重点在哪几章?

吴樾
得吾道者
高等数学这本书以前是叫《微积分》,考研的重点在上册的:第二三章:导数微分及其应用,第四章:不定积分,第五章:定积分下册的第九章:多元函数微分,第十章:重积分,第十一章:曲线曲面积分

有哪些基础的考研数学复习资料?

烤肉点
孙武
考研数学在考研究生的四门科目里面可以说是最好拿分的了,140+的分数都不叫稀奇,得数学者得考研,一点都不假,我介绍几本基础的考研数学指导书,你可以考虑看看。高等数学考研数学的高数部分占据的分数是最多的,在此推荐同济大学数学系编的《高等数学》第七版,很多学校也拿这本书当作教材用的。其实这跟第六版相比没有明显的变化,符合“工科本科数学基础课程教学”的基本要求,适合高校工科专业的学生。这一修改遵循“改革,不断调整,制造精品”的要求,第六版中个人概念的定义,证明了一个定理、公式和定理的假设做出了一些重要的变化;对书的写作和标记的使用进行了仔细的研究。个别内容的安排已经调整,问题配置进一步丰富和充实,并更换了一些问题集。线性代数考研数学中的线性代数很简单的,很多题目都很基础。在此推荐同济大学应用数学系编写的第四版《线性代数》,线性代数的特点是概念比较抽象,概念是密切相关的。其内容包括行列式、矩阵、向量空间、线性方程组、矩阵相似对角化、二次线性、线性空间和线性变换。这是一门在大学一年级的工科学生必修的必修课。概率论在此推荐中国质检出版社出版的《概率论与数理统计》,主要内容包括概率论的基本概念、随机变量及其概率分布、数字特征、大数与中心极限定理、统计及其概率分布、参数估计与假设检验、回归分析、方差分析等。总结:希望每一个参加考研的同学都能在高等数学上取得好成绩。

301数学一跟601这些有什么区别?我考研的课程是数学301,内容是哪些方面,参考书目有哪些、?

立乎北极
老大回
考研的统考数学共有四种,即301数学一,302数学二,303数学三,304数学四。四种数学的考试范围及适用专业不同。601数学指的是考研自主招生题目。301数学一考试科目:高等数学、线性代数、概率论与数理统计301数学参考书目:高数教材:《高等数学》——同济版,高等教育出版社出版;线代教材:《线性代数》——同济版,高等教育出版社;概率教材:《概率论与数理统计》——浙江大学盛骤版,高等教育出版社;高等数学:函数、极限、连续考试要求:1.理解函数的概念2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求:1.理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试要求:1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.向量代数和空间解析几何考试要求:1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数微分学考试要求:1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题.多元函数积分学考试要求:1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).无穷级数考试要求:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.常微分方程考试要求:1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.3.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.4.了解分块矩阵及其运算.向量考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求:1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件解空间 非齐次线性方程组的通解考试要求:l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率统计随机事件和概率考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典概率 几何概率 条件概率概率的基本公式 事件的独立性 独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念2.掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念随机变量及其分布考试内容量 :随机变量 随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求:1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.3.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为4.会求随机变量函数的分布.多维随机变量及其分布考试内容:多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求:1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.随机变量的数字特征考试内容:随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求:1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.大数定律和中心极限定理考试内容:切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求:1.了解切比雪夫不等式.2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).数理统计的基本概念考试内容:总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求:1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.参数估计考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求;1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.假设检验考试内容:显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求:1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。2.掌握单个及两个正态总体的均值和方差的假设检验。扩展资料:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2.授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业1.经济学门类的各一级学科。2.管理学门类中的工商管理、农林经济管理一级学科。3.授管理学学位的管理科学与工程一级学科。参考链接:百度百科:考研数学

考研高数复习

六德
老处女
哪一版都是一样的,因为基本知识点是一样的,把知识掌握了就行。考研数学一定要看书,必须仔细看书,绝不能跳过课本。把书上的基本知识点背过,记住,把书上的例题看懂,弄明白,会举一反三,知其然还要知其所以然。如果有条件,先把书上的课后题做会,每一步是怎么出来的,根据什么做的搞清楚,然后再做其他的题。决不能直接按复习全书复习!!!我今年考的,113,不算低也不是高分,我买了三本复习全书,一本也没看,只是把书看懂了,把知识点记牢了,把辅导班上讲的知识点都搞清楚了,在有的放矢的做了一些针对性的题目。一开始我还后悔,花钱买了书结果没时间看,但是,我有一个同学,一开始就按照复习全书复习,结果离考试没有几天时后悔了,因为知识点没记牢,基本题型都掌握不了,还是要突击看书。所以,课本是关键,基础打牢了,哪怕你没时间看其他的东西到时候也不会慌了神。考研题虽然千变万化,但万变不离其宗,还是考察基本的知识点。那些所谓的复习全书,都是为了求新,吸引我们的眼球,所以找了各种怪题,难题,让我们觉得没有这本书考研就完蛋了的题,很多都不贴近实际,只追求高度没有基础。对考研辅导班的态度也是如此,不能完全依赖于他,关键是自己,他只能给你画画重点,说说方法,而且辅导班跟辅导书一样,为的都是你口袋里的钱,他给你的很多东西不一定适用(但会比书好点),而且,他们为了显示自己能力强大,说:这个不考那个考……他们怎么能确定呢?他们依据的只是历年来的统计数字,你怎么确定出题人不会突发奇想呢?所以,只要是大刚上有的知识点一个也那个不能放过,重点要重点看,从来没考过的脑子里也要有印象。最后,用那本辅导书其实都一样,知识点都是一样的,甚至题都是一样的,他们也会互相借鉴的嘛~有一本就行,看看有哪些好方法,关键还是自己用课本打基础。 还有,一定要做真题!如果没有时间甚至可以不做模拟,但一定做三遍以上真题,每一边找出自己错的地方,为什么错,为什么不懂,为什么不会,考的是什么知识点,为什么这么考,还有什么考法,其他年的试题有没有类似的……一定要弄懂真题!!! 对于时间安排,其实是因人而异的。我开始的比较晚,暑假上了一个辅导班,把基本知识点捋了一遍,然后才开始看书。不过我感觉到后来时间有点紧。你若从现在开始,建议下学期开学之前把课本搞定,以后在时不时的拿出来翻翻。然后就可以看复习全书,做一些基本题,直到对所有知识都感觉掌握了再做真题和模拟题。考试之前再过一遍真题。次数?这个问题我还真没考虑过,无所谓几遍,把知识掌握了为目标,不要脱离课本,看完一遍再来一遍就是了~~相信自己,没问题的!!!祝你成功!!!都一样,我用的是第三版....但是现在习题答案书都是最新的了,一样用,影响不大。要按照考纲来,你会发现,娘的,不管哪一版,考纲要求的知识点,都有!