欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2020考研数学二大纲和数一大纲有什么区别?

妄称文武
果有言邪
数一和数二的差别挺大的高数下册书数二只考查第一二章而且第一章只有部分几节然后就是最后一章的常微分方程的几节线性代数数一和数二考的差不多只不过数二不考空间向量大纲一般作用不大决定考数几了把课本上好好复习一遍后买本李永乐的考研数学复习全书至少做两遍就可以这本书分数一和数二它注重基础很适合考研复习看看下面这俩本书最受欢迎的一是《数学复习全书-李永乐》评价★★★★★5分李永乐复习全书无论从基础、技巧方面来说都不逊色于陈文灯复习全书。此书比较重基础,解题方法也都是大家比较能接受的(属于一目了然)思路也很清晰。对基础一般的同学比较实用二是《陈文灯复习全书》评价★★★★☆4.5分陈文灯的全书比较注重技巧。有不少类型的题都比较技巧化。个人觉得考研数学对于技巧的要求不是那么高,更多的题目都是在基础之上稍微用点技巧。但此书的内容还是比较全面,尤其陈文灯的“中值定理”篇章写的比较好,是这本书的一个亮点。做至少两遍的话差不多

2020考研数学高等数学基础讲义01 函数部分

等着我
复制品
去百度文库,查看完整内容>内容来自用户:好读书不求甚解高等数学全考点精讲考点:函数及其表达式的求解1.函数的概念定义1设x和y是两个变量,D是一个给定的数集,如果对于每个数xD,变量y在对应法则f作用下总有唯一确定的一个数值y和它对应,则称y是x的函数,记为y=f(x),常称x为自变量,y为因变量,D为函数的定义域.−x,x0例1(绝对值函数)y=x=−x,x,xx00=0,x=0x,x0.例2(最值函数)U=maxf(x),g(x),V=minf(x),g(x).−1,x0例3(符号函数)y=sgnx=0,x=0.1,x0例4(取整函数)y=x;表示不超过x的最大整数,如57=____;2=____;−1=____;−3.5=____.例5(分段函数)y=fg((x),x),xxx0x0或y=fg(x),xa,x=(x),xx0x0x0.例6(狄利克雷函数)D(x)=1,0,xQxQC.例7(幂指函数)y=u(x)v(x),u(x)0,且u(x)1.例8设f(x)+2f1x=1−x,求f(x).例9设fx+1x=x2+1x2,求f(x).例10设xoy平面上有正方形D:0

高数一考研大纲

及期年也
学思
首先纠正错误,要么考”数学一“(简称数一),要么就考”高等数学“(个别自主命题的院校专业),没有”高数一“之说的!到百度上搜索”考研数学一考试大纲“就会出现好多资源信息的。本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。 总要求 考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。 复习考试内容 一、函数、极限和连续 (一)函数 1.知识范围 (1)函数的概念: 函数的定义 函数的表示法 分段函数 隐函数 (2)函数的性质: 单调性 奇偶性 有界性 周期性 (3)反函数: 反函数的定义 反函数的图像 (4)基本初等函数: 幂函数 指数函数 对数函数 三角函数 反三角函数 (5)函数的四则运算与复合运算 (6)初等函数 2.要求 (1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。 (2)理解函数的单调性、奇偶性、有界性和周期性。 (3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。 (4)熟练掌握函数的四则运算与复合运算。 (5)掌握基本初等函数的性质及其图像。 (6)了解初等函数的概念。 (7)会建立简单实际问题的函数关系式。 (二)极限 1.知识范围 (1)数列极限的概念:数列 数列极限的定义 (2)数列极限的性质:唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理 (3)函数极限的概念:函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义 (4)函数极限的性质:唯一性 四则运算法则 夹通定理 (5)无穷小量与无穷大量: 无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶 (6)两个重要极限 2.要求 (1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解极限的有关性质,掌握极限的四则运算法则。 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (4)熟练掌握用两个重要极限求极限的方法。 (三)连续 1.知识范围 (1)函数连续的概念:函数在一点处连续的定义 左、右连续 函数在一点处连续的充分必要条件函数的间断点及其分类 (2)函数在一点处连续的性质:连续函数的四则运算 复合函数的连续性反函数的连续性 (3)闭区间上连续函数的性质:有界性定理 最大值与最小值定理 介值定理(包括零点定理) (4)初等函数的连续性 2.要求 (1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。 (2)会求函数的间断点及确定其类型。 (3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。 (4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。 二、一元函数微分学 (一)导数与微分 1.知识范围 (1)导数概念:导数的定义 左导数与右导数 函数在一点处可导的充分必要条件导数的几何意义与物理意义 可导与连续的关系 (2)求导法则与导数的基本公式:导数的四则运算 反函数的导数 导数的基本公式 (3)求导方法:复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法求分段函数的导数 (4)高阶导数:高阶导数的定义 高阶导数的计算 (5)微分:微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性 2.要求 (1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。 (2)会求曲线上一点处的切线方程与法线方程。 (3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。 (4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。 (5)理解高阶导数的概念,会求简单函数的 阶导数。 (6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。 (二)微分中值定理及导数的应用 1.知识范围 (1)微分中值定理:罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理 (2)洛必达(L’Hospital)法则 (3)函数增减性的判定法 (4)函数的极值与极值点 最大值与最小值 (5)曲线的凹凸性、拐点 (6)曲线的水平渐近线与铅直渐近线 2.要求 (1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。 (2)熟练掌握用洛必达法则求“ ”、“ ”、“ ”、“ ”、“ ”、“ ”、“ ”型未定式的极限的方法。 (3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。 (4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。 (5)会判断曲线的凹凸性,会求曲线的拐点。 (6)会求曲线的水平渐近线与铅直渐近线。 (7)会作出简单函数的图形。 三、一元函数积分学 (一)不定积分 1.知识范围 (1)不定积分:原函数与不定积分的定义 原函数存在定理 不定积分的性质 (2)基本积分公式 (3)换元积分法:第一换元法(凑微分法) 第二换元法 (4)分部积分法 (5)一些简单有理函数的积分 2.要求 (1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。 (2)熟练掌握不定积分的基本公式。 (3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。 (4)熟练掌握不定积分的分部积分法。 (5)会求简单有理函数的不定积分。 (二)定积分 1.知识范围 (1)定积分的概念:定积分的定义及其几何意义 可积条件 (2)定积分的性质 (3)定积分的计算:变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法 分部积分法 (4)无穷区间的广义积分 (5)定积分的应用:平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功 2.要求 (1)理解定积分的概念及其几何意义,了解函数可积的条件。 (2)掌握定积分的基本性质。 (3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。 (4)熟练掌握牛顿—莱布尼茨公式。 (5)掌握定积分的换元积分法与分部积分法。 (6)理解无穷区间的广义积分的概念,掌握其计算方法。 (7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。 会用定积分求沿直线运动时变力所作的功。 四、向量代数与空间解析几何 (一)向量代数 1.知识范围 (1)向量的概念:向量的定义 向量的模 单位向量 向量在坐标轴上的投影向量的坐标表示法 向量的方向余弦 (2)向量的线性运算:向量的加法 向量的减法 向量的数乘 (3)向量的数量积:二向量的夹角 二向量垂直的充分必要条件 (4)二向量的向量积 二向量平行的充分必要条件 2.要求 (1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。 (2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。 (3)熟练掌握二向量平行、垂直的充分必要条件。 (二)平面与直线 1.知识范围 (1)常见的平面方程:点法式方程 一般式方程 (2)两平面的位置关系(平行、垂直和斜交) (3)点到平面的距离 (4)空间直线方程:标准式方程(又称对称式方程或点向式方程)一般式方程参数式方程 (5)两直线的位置关系(平行、垂直) (6)直线与平面的位置关系(平行、垂直和直线在平面上) 2.要求 (1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。 (2)会求点到平面的距离。 (3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。 (4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。 (三)简单的二次曲面 1.知识范围:球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面 2.要求:了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。 五、多元函数微积分学 (一)多元函数微分学 1.知识范围 (1)多元函数:多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念 (2)偏导数与全微分:偏导数 全微分 二阶偏导数 (3)复合函数的偏导数 (4)隐函数的偏导数 (5)二元函数的无条件极值与条件极值 2.要求 (1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。 (2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。 (3)掌握二元函数的一、二阶偏导数计算方法。 (4)掌握复合函数一阶偏导数的求法。 (5)会求二元函数的全微分。 (6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。 (7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。 (二)二重积分 1.知识范围 (1)二重积分的概念:二重积分的定义二重积分的几何意义 (2)二重积分的性质 (3)二重积分的计算 (4)二重积分的应用 2.要求 (1)理解二重积分的概念及其性质。 (2)掌握二重积分在直角坐标系及极坐标系下的计算方法。 (3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。 六、无穷级数 (一)数项级数 1.知识范围 (1)数项级数:数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件 (2)正项级数收敛性的判别法:比较判别法 比值判别法 (3)任意项级数:交错级数 绝对收敛 条件收敛 莱布尼茨判别法 2.要求(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。 (2)掌握正项级数的比值判别法。会用正项级数的比较判别法。 (3)掌握几何级数 、调和级数 与 级数 的收敛性。 (4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。 (二)幂级数 1.知识范围 (1)幂级数的概念:收敛半径 收敛区间 (2)幂级数的基本性质 (3)将简单的初等函数展开为幂级数 2.要求 (1)了解幂级数的概念。 (2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。 (3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。 (4)会运用 的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为或 的幂级数。 七、常微分方程 (一)一阶微分方程 1.知识范围 (1)微分方程的概念:微分方程的定义 阶 解 通解 初始条件 特解 (2)可分离变量的方程 (3)一阶线性方程 2.要求 (1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。 (2)掌握可分离变量方程的解法。 (3)掌握一阶线性方程的解法。 (二)可降价方程 1.知识范围 (1) 型方程 (2) 型方程 2.要求 (1)会用降阶法解 型方程。 (2)会用降阶法解 型方程。 (三)二阶线性微分方程 1.知识范围 (1)二阶线性微分方程解的结构 (2)二阶常系数齐次线性微分方程 (3)二阶常系数非齐次线性微分方程 2.要求 (1)了解二阶线性微分方程解的结构。 (2)掌握二阶常系数齐次线性微分方程的解法。 (3)掌握二阶常系数非齐次线性微分方程的解法(自由项限定为 ,其中为 的 次多项式, 为实常数; ,其中 为实常数)。 考试形式及试卷结构 试卷总分:150分 考试时间:150分钟 考试方式:闭卷,笔试 试卷内容比例: 函数、极限和连续 约15% 一元函数微分学 约25% 一元函数积分学 约20% 多元函数微积分(含向量代数与空间解析几何) 约20% 无穷级数 约10% 常微分方程 约10% 试卷题型比例: 选择题 约15% 填空题 约25% 解答题 约60% 试题难易比例: 容易题 约30% 中等难度题 约50% 较难题 约20%

2020考研数学一大纲原文(PDF版)

大狂魔
失饪
去百度文库,查看完整内容>内容来自用户:文都图书来源:文都教育高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.考试要求四、向量代数和空间解析几何4.考试要求8.8.2.考试要求2.

考研数学二大纲对应《高等数学》和《线性代数》哪几章?

金臂童
素冠
教材不同,对应第几章也是不同的。主要内容为:高等数学:函数、极限、连续 一元函数微分学 一元函数积分学  多元函数微积分学(包含二重积分) 常微分方程线性代数:行列式 矩阵 向量 线性方程组 矩阵的特征值和特征向量 二次型详细大纲如下,请认真研读。2011年考研数学二大纲考试科目  高等数学、线性代数 考试形式和试卷结构  1、试卷满分及考试时间   试卷满分为150分,考试时间为180分钟。   2、答题方式   答题方式为闭卷、笔试。   3、试卷内容结构   高等数学 78%   线性代数 22%   4、试卷题型结构   试卷题型结构为:   单项选择题选题 8小题,每题4分,共32分   填空题 6小题,每题4分,共24分   解答题(包括证明题) 9小题,共94分 考试内容之高等数学  函数、极限、连续   考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:   函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质   考试要求   1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.   2. 了解函数的有界性、单调性、周期性和奇偶性.   3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念   4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.   5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.   6. 掌握极限的性质及四则运算法则   7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.   8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.   9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.   10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.   一元函数微分学   考试要求   1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.   2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.   3. 了解高阶导数的概念,会求简单函数的高阶导数.   4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.   5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.   6. 掌握用洛必达法刚求未定式极限的方法.   7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.   8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.   9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.   一元函数积分学   考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用   考试要求   1. 理解原函数的概念,理解不定积分和定积分的概念.   2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.   3. 会求有理函数、三角函数有理式和简单无理函数的积分.   4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.   5. 了解反常积分的概念,会计算反常积分.   6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.   多元函数微积分学   考试要求   1. 了解多元函数的概念,了解二元函数的几何意义.   2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.   3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.   4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.   5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).   常微分方程   考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用   考试要求   1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.   2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程   3. 会用降阶法解下列形式的微分方程: , 和 .   4. 理解二阶线性微分方程解的性质及解的结构定理.   5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.   6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.   7. 会用微分方程解决一些简单的应用问题. 考试内容之线性代数  行列式   考试内容:行列式的概念和基本性质 行列式按行(列)展开定理   考试要求   1.了解行列式的概念,掌握行列式的性质.   2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.   矩阵   考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算   考试要求   1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.   2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.   3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.   4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.   向量   考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法   考试要求   1.理解n维向量、向量的线性组合与线性表示的概念.   2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.   3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.   4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系   5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.   线性方程组   考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解   考试要求   1.会用克莱姆法则.   2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.   3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.   4.理解非齐次线性方程组的解的结构及通解的概念.   5.会用初等行变换求解线性方程组.   矩阵的特征值和特征向量   考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵   考试要求   1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.   2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.   3.理解实对称矩阵的特征值和特征向量的性质.   二次型   考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性   考试要求   1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.   2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.   3.理解正定二次型、正定矩阵的概念,并掌握其判别法.高等数学是高教5版,线性代数是同济5版同济的教材公认不错,用的最广泛。最新的是六版。

考研数学二大纲对应高等数学第六版

夫子相亲
复印店
不是的。考纲不对应哪本书。

考研数学每年大纲变化的多嘛?

教之末也
大恐缦缦
考研数学分为四个部分:专业数学方向的(数学分析+高等代数,部分学校例如复旦大学还会考实分析);数学一(高等数学+线性代数+概率论与数理统计);数学二(高等数学+线性代数);数学三(高等数学+线性代数+概率论与数理统计)。专业数学方向的每年内容都是只可能增不会减的(数学专业的上面提到的那些考试内容在研究生阶段虽然没什么用处但是仍然是必须掌握的),就最近几年来说,复旦和北大方面有些微调整(除了考察数学分析和高等代数之外,复旦增加了实分析内容,北大增加了解析几何的内容)。数学一、二内容近些年没有改变,因为主要是面对的工科学生相对来说数学在研究生阶段仍然会有很大的作用(部分专业偏于数理统计),所以内容上调整不大。数学三主要面对是经济、金融管理类的学生,近些年来缩减了些内容(主要体现在二重三重积分上面),其实此类考生以后学习过程中重点对高等概率论有很大应用,但是线性代数等方面的应用不怎么明显,鉴于此类学生偏文性质所以缩减了些内容。

2019考研数一教材都用什么版本的?

萧何
三年之后
高等数学一般用同济大学的《高等数学》第五版或第六版。线性代数一般用清华大学出版社居余马写的《线性代数》,或者是同济大学的《工程线性代数》概率论数理统计一般用浙江大学盛骤编写的《概率论与数理统计》第四版。拓展资料针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为: 针对工科类的为数学一、数学二针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)具体不同专业所使用的试卷种类有具体规定。参考资料考研数学—百度百科

考研中,数二中的高数不考哪些内容?

独闻和焉
举之无上
只需要知道考什么就可以了~不需要知道不考什么~~下面是数学二大纲规定涉及到的内容:考试内容之高等数学函数、极限、连续考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法刚求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 &gt;0时,f(x)的图形是凹的;当 &lt;0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念.2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3. 会求有理函数、三角函数有理式和简单无理函数的积分.4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5. 了解反常积分的概念,会计算反常积分.6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.多元函数微积分学考试要求1. 了解多元函数的概念,了解二元函数的几何意义.2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4. 了解多元函数极值和条件极值的概念,并求解一些简单的应用问题.5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).常微分方程考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程3. 会用降阶法解下列形式的微分方程: , 和 .4. 理解二阶线性微分方程解的性质及解的结构定理.5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7. 会用微分方程解决一些简单的应用问题.考试内容之线性代数行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.线性方程组考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,3.理解正定二次型、正定矩阵的概念,并掌握其判别法