欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数一和数二哪个难

道不可有
爱与战
一般来说数一最难,数一数一在三个当中难度是最大的一个,首先是它考的内容比数二数三多一些,其次就是试题的难度和深度大一些。数一要考的内容有:高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间几何、多元函数微积分学、级数、常微分方程。线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型概率论与数理统计:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验。对于考数一的专业也是和数二、数三不同的。大部分考数一的都是学术型专业。力学、机械工程、光学工程、仪器科学与技术、动力工程、电气工程、控制科学与工程等等专业。数二数二相对于数一在内容上少了一个科目是概率,难度比数一稍低比数三稍高。数二要考的内容有:高数:极限、导数与导数的应用、中值定理、不定积分、定积分、定积分的应用、多元函数微分学、二重积分、常微分方程。线代:行列式、矩阵、向量组的相关性与秩、线性方程组、特征值和特征向量考数二的一般都是专硕,当然也有一些专硕的是考数一的。纺织科学与工程、轻工技术与工程、农业工程、林业工程、控制工程、集成电路、通信工程等等。

考研数学二高等数学极限

不笑
长发
分子分母同时除以e^2x原极限=lim(x趋于正无穷)x³(3+e^-x)/(1+e^x)[e^-2x+(e^-x+1)²]此时e^-x趋于0即原极限=lim(x趋于正无穷)x³/(1+e^x)x³/e^x趋于0于是极限值为0

研究生考试有些专业考高等数学而有的考数二 有什么区别吗

旄丘
万民苦之
有一个很大的区别就是说学模式的问题,数学三的要求比较高,数学四的概念考察要比数三难一些,还有一点就是数三和数四复习上,微积分数三高一些。 区分四份试卷的侧重点 不同专业考生所须进行考试的数学试卷类型不同,因此区分不同试卷的侧重点,进行针对性复习很有必要。 清华大学数学系的刘坤林教授认为,考研数学4份试卷的最大不同表现在:数一、数二属于理工类,数三、数四属于经济类。 报考尖端工程或是在未来研究中需要较多运用数学的考生需要考数一,比如报考计算机、信息、力学、航天等专业的考生。报考专业属于工程类并在将来学习中对数学要求不是特别高的考生需要考数二,如城建等专业。报考专业属于经济类、工商类的考生则需要考数三、数四。 一些经济类专业的考生认为,数学考研试卷中数三、数四只考经济数学。"其实不然。数三、数四考的还是高等数学。"刘坤林教授举例说,经济类专业考生的使用的数学试卷中,一个题目里可能会涉及一些含有经济术语的题目,比如一个产品如何使成本最低,销售产品如何使利润最大。"但不要相信数三、数四是考经济数学,拿一套经济类丛书来看就行了。数学一、二、三、四都要按理工类专业要求复习,才会有好成绩。" 陈文灯教授说,理工类数学试卷对高等数学考查的要求最高,其重点是高数解题分析。经济类数学试卷,对线性代数、概率与数理统计要求高,考生应该把离散型二维随机变量及其分布作为复习重点。一般来说工学专业考数学一,理学专业考数学二,但有些对数学要求不是很高的专业因为研究方向的不同各个学校并不相同,有的考数学一,而有的则考数学二,比如说我们GIS—地理信息系统。经济管理类专业考数学三、数学四。数学根据你所报考的专业分为数学1 2 3 4``全国统一命题``难度依次减少,而高等数学这门课是这4个数学考试中必考的内容,而你所说的高等数学所考的也可能是某个学校的专业的一门专业课把

考研高等数学一与二有什么区别

去而上仙
黑桑
数学一是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。数学二是报考农学的学生考,考试内容只有高等数学【{[【【 http://yz.kuakao.com/bkgl/n-499701.html 】和线性代数,但是高等数学中删去的较多,是考试内容最少的数二不考概率论

考研高等数学与数一数二什么区别

独往独来
桃太
考研高等数学是数学类、统计类专业考研中的专业科目,考试深度、广度与数一数二有很大区别的,因为是数学类的专业,难度你自己可以想象的!!

考研数学二范围(同济第六版)

乖乖女
示朕以默
1、考研数学二只考高等数学和线性代数,概率和数理统计不考。2、具体情况:(1)高等数学(分值比例占总分78%)同济六版高等数学,除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。(2)线性代数(分值比例占总分22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。扩展资料:考研数学二大纲之高等数学一、函数、极限、连续1、考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形;初等函数函数关系的建立数列极限与函数极限的定义及其性质;函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念;函数间断点的类型 初等函数的连续性;闭区间上连续函数的性质。2、考试要求(1)、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。(2)、了解函数的有界性、单调性、周期性和奇偶性。(3)、理解复合函数及分段函数的概念了解反函数及隐函数的概念。(4)、掌握基本初等函数的性质及其图形,了解初等函数的概念。(5)、 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。(6)、掌握极限的性质及四则运算法则。(7)、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。(8)、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。(9)、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。(10)、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分1、考试要求(1)、 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。(2)、 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。(3)、了解高阶导数的概念,会求简单函数的高阶导数。(4)、 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。(5)、 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理。(6)、掌握用洛必达法则求未定式极限的方法。(7)、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。(8)、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。(9)、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分1、考试内容原函数和不定积分的概念;不定积分的基本性质 基本积分公式定积分的概念和基本性质;定积分中值定理积分上限的函数及其导数;牛顿-莱布尼茨(Newton-Leibniz)公式;不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用2、考试要求(1)、理解原函数的概念,理解不定积分和定积分的概念。(2)、 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。(3)、 会求有理函数、三角函数有理式和简单无理函数的积分。(4)、理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。(5)、了解反常积分的概念,会计算反常积分。(6)、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、多元函数微积分学1、考试要求(1)、 了解多元函数的概念,了解二元函数的几何意义。(2)、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。(3)、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。(4)、 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.(5)、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程1、考试内容常微分方程的基本概念;变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的简单应用。2、考试要求(1)、了解微分方程及其阶、解、通解、初始条件和特解等概念。(2)、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。(3)、会用降阶法解微分方程。(4)、理解二阶线性微分方程解的性质及解的结构定理。(5)、 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。(6)、 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。(7)、会用微分方程解决一些简单的应用问题。考研数学二大纲之线性代数一、行列式1、考试内容行列式的概念和基本性质 行列式按行(列)展开定理2、考试要求(1)、了解行列式的概念,掌握行列式的性质.(2)、会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵1、考试内容矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;矩阵可逆的充分必要条件;伴随矩阵矩阵的初等变换;初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算。2、考试要求(1)、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.(2)、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.(3)、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.(4)、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.(5)、了解分块矩阵及其运算.三、向量1、考试内容向量的概念;向量的线性组合和线性;表示向量组的线性相关与线性无关;向量组的极大线性无关组等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量的内积线性;无关向量组的正交规范化方法2、考试要求(1)、解n维向量、向量的线性组合与线性表示的概念.(2)、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.(3)、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.(4)、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系(5)、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组1、考试内容:线性方程组的克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和解的结构;齐次线性方程组的基础解系和通解;非齐次线性方程组的通解。2、考试要求(1)、会用克莱姆法则。(2)、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。(3)、理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。(4)、理解非齐次线性方程组的解的结构及通解的概念。(5)、会用初等行变换求解线性方程组。五、矩阵的特征值和特征向量1、考试内容矩阵的特征值和特征向量的概念;性质相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值;特征向量及其相似对角矩阵。2、考试要求(1)、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。(2)、理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵。(3)、理解实对称矩阵的特征值和特征向量的性质。六、二次型1、考试内容二次型及其矩阵;表示合同变换与合同矩阵二次型的秩惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性。2、考试要求(1)、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念。(2)、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。(3)、理解正定二次型、正定矩阵的概念,并掌握其判别法。参考资料:百度百科-考研数学二大纲

考研数学二包括哪些课程?

十年九潦
布利斯
数学二包含:1.高等数学 78%。。2.线性代数 22%考研数学二考试内容:(一)试卷满分及考试时间1.试卷满分为150分2.考试时间为180分钟。(二)答题方式1.答题方式为闭卷2.笔试。(三)试卷内容结构1.高等数学 78%2.线性代数 22%(四试)卷题型结构1.试卷题型结构为:单项选择题 8小题,每题4分,共32分2.填空题 6小题,每题4分,共24分3.解答题(包括证明题) 9小题,共94分

考研数学一二三哪个最难

藏珠于渊
数一时最难的,数一主要考高等数学、概率论与数理统计、线性代数三门课!《高等数学》除了一部分*号外全考(82分),《线性代数》六章全考(34分),《概率论及数理统计》考到第八章第5节(第七章2、6、7节不考)(34分)!! 但是不是你想象中那么难,只要你好好花两个月的时间好好把李永乐全书看两遍,最后再结合做些真题,考个130还是问题不大的!大部分工科和理学都考的是数一!!数二相对来说比数一简单,数二主要考高等数学、线性代数!《高等数学》(116分),《线性代数》考前第五章(34分)!注意不考概率论与数理统计!!主要是像生物方向、化学方向等一些方向的考数二!数三考的内容和数一差不多,(《微积分》(82分),《线性代数》考前五章(34分),《概率论及数理统计》考到第七章第1节(34分) )但是难度数三就简单很多了!主要是面向经济管理类得考生!数学一二三的差别其实并不只在难度上,的是体现在考试范围和侧重点的差别上。 数一、数二一般是理工类的,它们对高数的要求比较高。与数学二相比,数学三考试的范围要更广一些,像无穷级数,这方面数学二就不考,数学二还不考概率论与数理统计。从一元函数微积分的角度来讲,数学二是这三类数学中最难的。 范围的大小从很大程度上也决定了复习投入精力的多少,从这个角度来说,整体难度上:数一>数二>数三

2017考研数学一和数二的区别

简发而栉
视之无形
1.考研数学一考试科目有:高等数学、线性代数、概率论与数理统计。考试内容比较多、全面、题目设置有一定难度。在试卷内容中,各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。2.考研数学二考试科目有:高等数学、线性代数。其中高数部分删去的较多,相对数一来说要简单很多。在试题中,各科目所占比例为:高等数学78%、线性代数22%。3.数学一主要是针对报考理工科的考生。适用的招生专业为:(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。(2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.(3)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。4.数学二主要是针对农、林、地、矿、油等专业的考生,适用的招生专业为:(1)工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。(2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.