欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

概率论与数理统计的考研相关

晏子
梦使
目前,大部分同学开始了概率论和数理统计的复习,本文主要想对同学们近期的复习做一个简单的指导。概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。在解答这部分考题时,考生易犯的错误有:(1)概念不清,弄不清事件之间的关系和事件的结构;(2)对试验分析错误,概率模型搞错;(3)计算概率的公式运用不当;(4)不能熟练地运用独立性去证明和计算;(5)不能熟练掌握和运用常用的概率分布及其数字特征;(6)不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。 在自然界和人类的日常生活中,随机现象非常普遍,比如每期福利彩票的中奖号码。概率论是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性作出一种客观的科学判断,并作出数量上的描述;比较这些可能性的大小。数理统计是应用概率的理论研究大量随机现象的规律性,对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明,并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性,使人们能从一组样本判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。过来人说[关键词] 研究热点罗燕(2007级概率论与数理统计硕士研究生):现在应用统计方向的研究越来越热了,应用统计更贴近生活,所以越来越被各行各业注重。但是我们不要忘了统计的基础是概率。概率方面的研究仍然值得重视。宋高阳(2007级概率论与数理统计硕士研究生):统计学主要方向有随机理论、数据分析、金融统计等,就现在的情况来看,数据分析和数据挖掘会比较热门,因为应用的范围更广一些。如果研究生毕业之后选择工作,应用性较强的学科是最好的选择。[关键词] 建议宋高阳(2007级概率论与数理统计硕士研究生):国内许多高校将统计学和金融学划归为一类,成立金融与统计学院或者直接统计学划归为经济系。这非常好理解,因为经济学和金融学都是以统计为基本方法的。但作为数学二级学科的统计学的范畴却和金融统计相去甚远,学术成分也更高一些。统计学以概率论为基础,理论性更强,对随机过程、概率极限、回归分析等基础知识的要求也更高。其实,统计学也不仅仅只是在金融学方面才有用武之地,回到开篇提到的“生物统计学”,就是当仁不让的热门“头牌”,这就要考生在报考时注意自己选择的到底是经济学院的统计学,还是数学系的统计学。跨考院校推荐北京师范大学的概率论研究群体历经三代人,已有40年的传统和积累,拥有陈木法、李增沪、张余辉、王凤雨等著名的专家学者。这一研究群体被国际上的两个主要数学评论杂志誉为“马氏过程的中国学派”或“北京学派”。主要研究方向有交互作用粒子系统、随机分析、测度值马氏过程等。概率论和数理统计学科实力较强的院校还有南开大学、中南大学、东北师范大学、武汉大学、华中科技大学、中国科学技术大学等。数学这棵大树历经多年的发展已经枝繁叶茂。一般重点大学的数学系都会有数十位甚至上百位教授或讲师,每位的研究方向都不一样,它们彼此的差异就好比达芬奇的鸡蛋,再加上与各种学科的交叉和发展,又产生了的新分支方向。也正因为这样,数学这门学科才会如此丰富多姿。怎样学“概率论与数理统计”“概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一[数学一和数学三都是占22%(概率论)]。由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多, 中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点. 高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题, 它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩。而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。一、 学习“概率论”要注意以下几个要点1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画。随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画. 此外若对一切实数集合B,知道P(X∈B). 那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(X∈B). 就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)>0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去.这样往往能“事半功倍”。二、 学习“数理统计”要注意以下几个要点1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义.了解数理统计能解决那些实际问题.对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆.例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足.掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住.事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。

南开大学概率论与数理统计考研方面复习建议有没有呢?

合唱团
解之也悲
对于专业课来讲,同一门在不同学校考的难度不一样考的范围也不一样,多打听打听之前的学长学姐考的情况,有的学校难度在全国出名,120分就算非常高的分了,但是其他学校考的确很简单,130、140都很正常。有的学校专业课可能是二选一,选自己最拿手和最有感觉的吧,当然还是要首先选容易考高分的。看看往年的考纲复习,一般不会有翻天覆地的变化。按照那个来复习,再关注下考研当年的变化,按照考纲来复习。推荐你去天道考研青青老师那看看,有专门的专业课指导哈,资料都提供的,我也是跨专业要考名校,我也报了学长学姐一对一指导的。不然自己实在没办法复习呢,我真的太难了

概率论与数理统计 考研全考么?

美洲狮
太始
2010年硕士研究生入学统一考试数学考试大纲--数学一 考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 高等教学 56% 线性代数 22% 概率论与数理统计 22% 四、试卷题型结构 试卷题型结构为: 单选题 8小题,每题4分,共32分 填空题 6小题,每题4分,共24分 解答题(包括证明题) 9小题,共94分高 等 数 学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用 考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值. 四、向量代数和空间解析几何 考试内容 向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程 考试要求 1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念. 8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程. 五、多元函数微分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用 考试要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质. 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,会求多元隐函数的偏导数. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题. 六、多元函数积分学 考试内容 二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用 考试要求 1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法. 5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.了解散度与旋度的概念,并会计算. 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等). 七、无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在上的傅里叶级数 函数在上的正弦级数和余弦级数 考试要求 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件. 2.掌握几何级数与级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 4.掌握交错级数的莱布尼茨判别法. 5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法. 8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和. 9.了解函数展开为泰勒级数的充分必要条件. 10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数. 11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式. 八、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程. 4.会用降阶法解下列形式的微分方程:. 5.理解线性微分方程解的性质及解的结构. 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程. 8.会解欧拉方程. 9.会用微分方程解决一些简单的应用问题.线 性 代 数 一、行列式 考试内容  行列式的概念和基本性质 行列式按行(列)展开定理 考试要求: 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容  矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质 考试要求 1.理解维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质. 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵 考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型 考试内容  二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式. 3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布 考试内容 随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用. 3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为 5.会求随机变量函数的分布. 三、多维随机变量及其分布 考试内容 多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布 考试要求 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征. 2.会求随机变量函数的数学期望. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理 考试要求 1.了解切比雪夫不等式. 2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律). 3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理). 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为: 2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算. 3.了解正态总体的常用抽样分布. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法. 3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性. 4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间. 八、假设检验 考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.

怎么学好考研概率论与数理统计(数三)

侵人自用
名理
我之前是数学专业的,数学学的还不错。你现在已经有了微积分的基础,去学概率论与数理统计就很简单了,很公式化确实是这样的,题不难,但是都是直接代的。概率论主要学高中那些概率的,随机变量,随机向量,数字特征,还有极限定理。数理统计主要学参数估计,假设检验,线性回归。概率论还好啦!数理统计更加公式化。这门科目用不到线性代数的,不用担心,很简单的不难。做曹显兵的题就可以了。你高中学过数学吧?基本思想差不过。有些公式之类的,或者定理需要背过。那需要看网上的教学视频吗?追答没有学过概率,自己先试着看书做题,如果理解不了的,再找视频看帮助理解吧。

数学专业概率论与数理统计 考研都考什么

狼少年
大追求
1、不同的学校考的概率理论与数理统计的具体内容是不同的,特别是对于985的学校,都是自主命题。主要说一下一般学校的《概率理论与数理统计》目录与考试类型2、目录与主要内容第一章:随机事件和概率第二章:随机变量及其分布第三章:多维随机变量及其分布第四章:随机变量的数字特征第五章:大数定律和中心极限定理第六章:数理统计的基本概念第七章:参数估计 3、常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等计算概率;(11)求随机变量函数的分布;(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。

概率论与数理统计考研?

草薙
王巍
你先学好本专业的基本课程,先不要着急琢磨考研,先把基础打好再说。比如运筹学,都是要学好的,万一将来打算跨专业考管工了,这个都是有帮助的。数学数大连理工最好,里面的精算什么的,都是很不错的。只要是好学校分数都高的………人多嘛……如果是纯数学的话,属于理学,搞理论性的比较重~不像工学搞实践的~所以我跟人还是建议LZ学工科类~这样还是比较好找工作………………

概率论与数理统计考研用书?

崔浩
渑池会
书都是差不多的,用哪本不是一样啊

概率论与数理统计考研用书?

循循善诱
苍蝇王
书都是差不多的,用哪本不是一样啊

考研数学概率论与数理统计怎么复习?

回东之齐
宋王之猛
概率论与数理统计是考研数学的基础课程余丙森2017《全国硕士研究生入学统一考试概率论与数理统计辅导讲义》