欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2021考研考试大纲公布在即!哪些事情需要提前知道?

雏苺
故曰不同
距离2021年考试大纲公布的日子,越来越近了。不少同学认为,考试大纲基本上都是稳定的,公布与否都不影响复习吧?这句话初听有道理,但殊不知,考试大纲是风向标,大纲中稍微改动几个字,可能就预示着不同的考察重点。一起来看吧~1.考试大纲指什么?全国硕士研究生入学统一考试考试大纲简称考试大纲,由教育部考试中心组织编写,规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策指导性考研用书。考试大纲的具体内容如下:2.考试大纲到底重要在哪里?为什么说考试大纲重要,是因为它决定了每年的命题方向。简单地说,就是国家给大家划了考试重点。就连市面上所有模拟题目,都是以考试大纲为基准出题的。所以说,理解了考试大纲的精髓,也就等于摸准了考研的任督二脉。给大家举一个例子,大家可能都认为,数学一和数学二的差别在于是否考概率论。但实际上,数一数二在高数上就有差别:数一在高数部分增加了多无穷级数和线面积分,而且这两部分考察频率特别高。今年深圳大学将部分专业的数学二改考察数学一,报考深圳大学的同学,一定要回归大纲,认真比对数二和数一知识点上的要求的不同。3.如何有效使用考试大纲呢?考试大纲在对知识点的解析中,对知识点不同的要求,这也代表大家需要掌握的不同难度。对知识点的要求,一般常有以下标志性的描述词汇:1)了解了解是大纲中最低的要求,即要求考生对概念、公式和理论进行了解,知道是什么意思即可,不需要进行的讨论。简单地说,“了解”就是知道“是什么”就可以了。2)理解“理解”比“了解”要求高了一个层次,也就是不仅要知道概念、定理的意思,还要知晓其来龙去脉。例如,这个概念为什么会被提出,是从哪个方面提出来的,都需要理解到位。3)掌握考试大纲中对知识点的最高要求,不仅要理解基本内容,还要知道概念、公式和定理的定义是如何推导出来的、有什么用处。对知识水平掌握要求较高。4)会用会用要求的是“会使用”,好比你知道计算机,会使用计算机。无需深究计算机操作系统的原理,只要做到如何操作即可。了解了考试大纲的重要性,也明白了知识点的具体要求,大家是不是就等大纲出来后,直接看考研大纲就可以呢?不,千万别拿起大纲直接看,因为如果只看干巴巴地大纲,估计翻几页就翻不下去了。更重要地是,大家不熟悉之前考试大纲,也没有办法进行大纲对比。那么这个时候,听大纲解析课是了解考研最新动向就是非常好的方法。小编悄悄告诉大家,中公考研在考试大纲发布第一时间,会为大家进行大纲解析。预知详情,可以关注中公考研网站哟!

现在准备2021考研的话,考研数学刚开始怎么复习比较好呢?

聂豹
轮椅舞
2021考研数学复习大致分为五个重要阶段:  一、基础阶段(2020.3-6)  1、这个时期大家平时的课程挺多的。在这里要叮嘱大家:当下课程学习是更重要的啊,对于复习考研,我们则在不上课的时候打个坚实的基础吧!  2.此阶段要做到对各科基础知识有整体印象,全面细致的了解知识点。  3.这个时期做模拟题都是无意义的,不如打好基础,再好好研究真题。还没决定学校和专业的童鞋,一定要在此阶段尽快定下来。  二、强化阶段(2020.7-9)  1.此阶段要清晰地了解各科的一级重要知识点,建立一个完整的逻辑框架,并根据重点、难点进行攻克。  2.难得有大段的时间可以专心复习,一定要制定全面复习计划,把握好每一天。  三、提升阶段(2020.9-11)  1.关注各招生单位的招生简章和专业计划,调整专业课复习计划。  2.认真回顾暑期强化笔记,启动习题练习。  3.政治在这个阶段占复习时间的比例要有所提升。  4.秋招正当时,这段时间要稳定心态,不要被周围不相干的人和事过多地打扰,安心地备考。  四、冲刺阶段(2020.12)  1.对各门课的知识进行认真的梳理,有效地整合,在头脑中形成对整个章节的知识框架图。  2.开始进行考场模拟训练,每天固定时间做整套试卷。  3.每天要抽出一定时间对重点和高频考点知识进行强化记忆。  4.这段时期可能大家都进入了复习疲倦期,要知道这是很正常的,不用过多地感到焦急,可以适当出去走走。  五、考前一周  1.突击强化记忆每门课老师预测的重点大题。  2.做一套真题,按照考研时间的安排,模拟实战。  3.好好休息,调整心态,平和地去对待考试。

什么专业考研考概率论啊

閟宮
恋之罪
数学一考试科目微积分、线性代数、概率论与数理统计初步数学二考试科目微积分、线性代数初步数学三考试科目微积分、线性代数、概率论与数理统计数学四考试科目微积分、线性代数、概率论数学一 高等数学约56 % 线性代数约 22 % 概率论与数理统计约22 %数学二 高等数学约78 % 线性代数约22 %数学三 微积分约56 % 线性代数约22 % 概率论与数理统计约22 %数学四 微积分约56 % 线性代数约22 % 概率论与数理统计约22 %至于具体的内容,每年的考试大纲都会说的比较清楚。

概率论与考研有关系吗??所谓的,数二是主要什么内容?、

无生
借嫁娘
有关系。但不是所有考研都考概率论。数学二的考核内容为:高等数学 78%线性代数 22%数二并不考概率论。拓展资料:针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。参考资料:百度百科——数学考研

考研,一般概率论与数理统计考哪些知识点(非数学专业)

好夫妻
四牡
参考教材:浙大第四版概率论与数理统计第一章1、交换律、结合律、分配率、的摩根律;(解题的基础)2、古典概型——有限等可能、几何模型——无限等可能;3、抽签原理——跟先后顺序无关;4、小概率原理——小概率事件在一次试验不可能发生,一旦发生就怀疑实现规律的正确性;5、条件概率:注意当条件的概率必须大于0;6、全概:原因>结果 贝叶斯:结果>原因;7、相容通过事件定义,独立通过概率定义。第二章1、0——1分布,二项分布,泊松分布X的取值都是从0开始;2、分布函数是右连续的,在求分布函数也尽量写成右连续的;3、分布函数的性质、概率密度的性质;4、连续性随机变量任一指定值的概率为0;5、概率为0不一定是不可能事件,概率为1不一定是必然事件;6、正态分布的图形性质;7、求函数的分布尽量按定义法,按定义写出基本公式;8、分段单调时应该分段使用公式再相加。第三章(这章比较容易出错)1、二维分布函数的性质;(不减函数而不是单增函数;右连续)2、求分布函数一定要按定义来,注意画对图形;3、求边缘分布的时候,注意不同变量的区间用在什么地方;求X的边缘分布的话,先对X的区间进行划分,再不同的区间对Y的全部区间进行积分(Y在不同的区间可能有不同的函数表达)4、负无穷到正无穷的E的负的二分之T平方的积分;(浙三P83)5、算条件概率也一样,注意相应的区间;(这种题细节丢分太可惜)6、max(x,y)与min(x,y)相互独立的情况是什么?独立同分布又是什么?7、边缘分布一般不能确定分布的,只有当变量相互独立才可以。第四章1、级数绝对收敛,期望才存在;2、期望的和等于和的期望,xy之间不要求任何关系;期望的乘积等于乘积的期望,xy要相互独立;3、浙三P120:分解的思想,还有P126;4、方差的和在独立和不独立时公式不一样;5、独立推出不相关;不相关推不出独立;不相关只是线性不相关;题目中如果xy的关系能够表示出来的话(一般)都是不独立;6、二维正态分布、独立不相关等价;7、提示:求一些积分的时候有时候可以用到对称性;8、数一400题P140那个评注上面T(4)=3!(会用,那么做题会很方便)第五章1、切比雪夫大数定律条件:相互独立、方差存在一致有上界;2、辛钦大数定律条件:独立同分布、期望存在;3、二项分布、泊松定理、拉普拉斯大数定理结合着看一下。第六章1、样本的变量独立同分布;2、统计量不含未知参数;3、X2分布的期望和方差看下去年真题最后一道;4、t分布图形对称性a的那个对称性公式看下;5、三个分布的形式一定要掌握;6、P168对后面检验和估计很有帮助。第七章1、矩估计就是x的1、2次方的期望;2、最大似然估计!有可能最大似然估计的两种方法结合在一起;(开下思路)3、区间估计;(如果能好好看书的话不难懂,不然就把P205复印下没事看两眼)第八章1、拒绝域与备择假设的符号相同P2292.P436期望和方差;

考研数学一大纲

芒乎何之
蓬户不完
函数与连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当f''(x)>0 时,f(x) 的图形是凹的;当f"(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.向量代数和空间解析几何考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数微分学考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.多元函数积分学考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).无穷级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握 , , , 及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数第一章:行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.第二章:矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.第三章:向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.第四章:线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.第五章:矩阵的特征值及特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.第六章:二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率与统计第一章:随机事件和概率考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.第二章:随机变量及其分布考试内容:随机变量 随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为5.会求随机变量函数的分布.第三章:多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.第四章:随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.第五章:大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .第六章:数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.第七章:参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.第八章:假设检验考试内容显著性检验假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验[1]您好!很高兴为您解答!考试科目高等数学、线性代数、概率论与数理统计考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构高等教学 56%线性代数 22%概率论与数理统计 22%4、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.参考资料:文都资讯网

考研数学每年大纲变化的多嘛?

己独曲全
圣人已死
考研数学分为四个部分:专业数学方向的(数学分析+高等代数,部分学校例如复旦大学还会考实分析);数学一(高等数学+线性代数+概率论与数理统计);数学二(高等数学+线性代数);数学三(高等数学+线性代数+概率论与数理统计)。专业数学方向的每年内容都是只可能增不会减的(数学专业的上面提到的那些考试内容在研究生阶段虽然没什么用处但是仍然是必须掌握的),就最近几年来说,复旦和北大方面有些微调整(除了考察数学分析和高等代数之外,复旦增加了实分析内容,北大增加了解析几何的内容)。数学一、二内容近些年没有改变,因为主要是面对的工科学生相对来说数学在研究生阶段仍然会有很大的作用(部分专业偏于数理统计),所以内容上调整不大。数学三主要面对是经济、金融管理类的学生,近些年来缩减了些内容(主要体现在二重三重积分上面),其实此类考生以后学习过程中重点对高等概率论有很大应用,但是线性代数等方面的应用不怎么明显,鉴于此类学生偏文性质所以缩减了些内容。

考研考试大纲到底重要在哪里?

九龙滩
夫灵公也
为什么说考试大纲重要,是因为它决定了每年的出题方向。简单地说,就是国家给大家划了考试重点。就连市面上所有模拟题目,都是以考试大纲为基准出题的。所以说,理解了考试大纲的精髓,也就等于摸准了考研的任督二脉。给大家举一个例子,大家可能都认为,数学一和数学二的差别在于是否考概率论。但实际上,数一数二在高数上就有差别:数一在高数部分增加了多无穷级数和线面积分,而且这两部分考察频率特别高。今年深圳大学将部分专业的数学二改考察数学一,报考深圳大学的同学,一定要回归大纲,认真比对数二和数一知识点上的要求的不同。考研考试大纲是非常重要的。可以对考试的内容和范围有更多的框定。

考研 数三 线代 概率 不考 内容?

里程碑
大河恋
其实两科的难易在于你的基础和心理,线代的关键是要有一个系统的知识网,个人觉得可以看看李永乐老师的讲义,本人觉得很不错,记住相应的概念和公式后就不会觉得特别难,至于概率,首先心理上要有不怕的精神,不要有头疼的想法,其实只是几个公式而已,背下来就好了。这两门分数是一样的,时间的安排要看你更擅长哪一门了,加油!