欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

山东蓝星东大有限公司30万吨年新型高性能聚醚多元醇

君火
鹤屋
去百度文库,查看完整内容>内容来自用户:学习永远在路上山东蓝星东大有限公司30万吨/年新型高性能聚醚多元醇项目环境影响报告书环境影响评价公众参与信息公示根据《中华人民共和国环境影响评价法》和《建设项目环境影响评价分类管理条例》相关规定,山东蓝星东大有限公司委托山东省环境保护科学研究设计院有限公司承担《山东蓝星东大有限公司30万吨/年新型高性能聚醚多元醇项目环境影响报告书》编制工作。现根据《环境影响评价公众参与办法》(生态环境部部令第4号)的有关要求,将本项目的有关情况向社会公告如下,以便征求广大公众的意见和建议。一、建设项目名称及概况项目名称:山东蓝星东大有限公司30万吨/年新型高性能聚醚多元醇项目建设单位:山东蓝星东大有限公司建设地点:淄博桓台县马桥化工产业园。建设性质:新建项目概况:拟建项目总投资196892.61万元,占地346.2亩,合230800m2,主要建设内容包括:建设21条生产线,生产POP、高回弹、软泡、弹性体、交联剂5个系列及一个特殊品种,总计约二十多个牌号的聚醚多元醇产品,项目建设包括生产装置、辅助装置、公用配套设置以及环保设施的建设。项目建设周期为24个月。二、建设单位名称及联系方式建设单位:山东蓝星东大有限公司地址:淄博市高新区济青路29号联系人:万工       0533-7878739(该化工园区已列入“山东省第一批公布化工园区和专业化工园区名单”,公示面积为201921.39.10.26.43.2.(根据该工程的排污特点及所处环境特征对环境影响因子进行识别、确定,识

石油酸化学组成研究进展

背诵者
彩虹舞
一、概述国外对原油酸性组分研究起步较早。以往人们对有机酸的研究比较关注,主要是因为羧酸一直被当成是油气从生源母质形成原油的中间产物,而且在有机-无机相互作用的过程中脂肪酸扮演着举足轻重的作用。原油酸性组分中最早得到结构确认的化合物是饱和环烷酸(Derungs,1956)。环烷酸成分约占原油中全部有机酸的50%或者更高(朱日彰,1991)。按照环的结构类型,可以将原油羧酸分为链状脂肪酸、类异戊二烯酸、单环环烷酸、多环环烷酸和芳香羧酸类(Lochte和Littmann,1955;Seifert和Teeter,1970;表1-2),有时还可能包括无机酸。另外一类可能影响原油酸值的化合物主要为低分子量的弱酸性烷基苯酚类化合物。例如Samadova和Guseinova(1993)发现阿塞拜疆高酸值原油中烷基苯酚类化合物是羧酸类含量的2~7倍。Mckay等(1975)通过对非烃类(含氮化合物如咔唑类,氨基化合物,以及含硫化合物等)进行综合分析,认为Wilmington原油中酸性化合物(质量分数)28%是羧酸,28%是酚类,28%是吡咯类,16%是氨类化合物。这可以大致反映原油中的酸性化合物组成。原油及石油产品中的高分子有机酸主要是环烷酸,它是一种具有臭味难挥发的无色液体,不溶于水,但易溶于油品、苯、醇及乙醚等有机溶剂。Lochte和Littman(1955)首次对原油中环烷酸的结构进行了解剖,发现环烷酸是石油酸中最主要的成分,其含量可达90%以上。环烷酸相对分子质量较大,分布范围在100~1000之间,碳数范围约在C7-C70之间。环烷酸结构以一环、二环、三环为主,还有一定量的四环、五环的环烷酸。其中主要是一元酸,芳环结构的芳香酸含量很低。炼油实践表明,各馏分油中的酸值随沸程范围而改变,沸程越高,酸值越大,尤其当沸点大于300℃以后的馏分,其酸值急剧上升。因此,环烷酸成分主要集中在300℃以上的重质馏分油中,其平均相对分子质量在300以上,是生产各种油品添加剂的极好原料,如润滑油清净分散剂、防锈剂、燃料油的分散稳定剂等。石油酸含量随原油中环烷烃含量的增加而增加,石油酸含量一般为(质量分数)1%~2%,C6以下为脂肪酸,C7-C10为以环烷酸占绝大多数和脂肪酸的混合物,C10-C14为烷基环烷酸,C14-C20环烷酸主要分布在润滑油馏分中。表1-2 原油中常见的有机酸类型(甲酯化)随着地球化学测试技术的发展,人们对原油中有机酸成分的认识逐渐深入。Tomczyk等(2001)报道了取自SanJoaquinVallay的原油石油酸类型分布。原油经历过喜氧生物降解(TAN=5.19mgKOH/g),通过萃取分析甲酯化的酸性组分发现其中40%(质量分数)并不是羧酸,只有10%的酸性化合物含有两个氧原子(羧基),同时大约50%的羧酸含有氮杂原子和25%的羧酸含有硫原子。像硫醇等酸性含硫化合物容易消失,这是因为它们很容易在空气中被氧化。以往有人曾经提出来源于微生物的氨基酸可能是原油中酸性组分的主要来源。电喷雾(ESI)傅里叶变换离子回旋共振(FT-ICR-MS)质谱技术的发展为石油酸的分析提供了一种新途径,Qian等(2001)通过高分辨率质谱分析南美重油样品,发现该样品中一元酸碳数分布范围为C15—C55,有1~6个脂肪环和1~3个芳环。在原油中已鉴定出的酸性组分包括O1、O2、O3、O4、N、N2、NO、NO2、SO、SO2、SO3、O2S和NS等多种杂原子组合,酸性化合物分子量分布范围一般在200~1000Da之间(Hughey等,2004,2007;Kim等,2005;Rogers,2005),表明其成分复杂。因此,单纯用常规气相色谱和气相色谱-质谱技术研究酚类和烷基酸等高挥发性成分无法完全了解原油酸性组分的真实面貌。不同文献中石油酸的组成数据差异较大,原因之一是采用了不同的实验分析方法,而更重要的是不同原油样品中石油酸组成各不相同。最近的一些研究工作主要是针对石油酸实验方法先进性的描述,缺乏对原油中石油酸组成的系统研究。二、原油酸性组分与原油总酸值的相关性表1-3为作者在加拿大地质调查局分析的原油样品中酸性组分(AF)和酸甲酯组分(FAMES)含量。如图1-2所示,除了从塔里木盆地取得的3个原油样品(TK101、S48和TK713)因酸化压裂影响了总酸值测定结果之外,所有其他从原油中分离出的酸甲酯组分含量(FAMES)与原油总酸值(TAN)具有很好的对应关系(r2=0.76)∶TAN(mgKOH/g)=0.5756×FAMES(mg/g)。同时,傅里叶红外光谱分析表明,甲酯化前的酸性组分中含有大量极性芳香族成分,导致原油酸性组分含量(AF)与原油总酸值(TAN)相关性很差。表1-3原油酸性组分(AF)和酸甲酯组分(FAMES)含量续表图1-2 从中国、苏丹和加拿大原油中分离出来的酸甲酯组分含量FAMES)与原油总酸值(TAN)的对比关系由于油砂抽提物黏度超出常规总酸值测定方法所适用的技术范畴,因此无法从商业实验室得到其总酸值数据。为弥补这项缺陷,初步采用酸甲酯组分含量(FAMES)与原油总酸值(TAN)的相关性来计算油砂抽提物的总酸值(表1-4)。三、石油酸的官能团组成为了解石油酸官能团组成特征,作者对一些原油/油砂抽提物及其分离出的酸性组分和酸甲酯组分,分别进行傅里叶红外光谱分析。图1-3为不同研究区代表性原油/油砂抽提物全油、酸性组分及酸甲酯组分傅里叶红外光谱图。表1-4 油砂抽提物的酸性组分(AF)和酸甲酯组分(FAMES)含量以及原油总酸值(TAN)计算结果图1-3 苏丹代表性高酸值原油(TAN=4.68mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(一)图1-3 苏丹代表性低酸值原油(TAN=0.15mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(二)图1-3 中国渤海湾盆地代表性高酸值原油(TAN=3.39mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(三)图1-3中国渤海湾盆地代表性低酸值原油(TAN=0.39mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(四)图1-3 西加拿大盆地代表性高酸值原油(油砂抽提物;TAN=15.40mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(五)图1-3 西加拿大盆地代表性低酸值原油(TAN=0.23mgKOH/g)全油(a)酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(六)(一)原油/油砂样品如图1-3所示,原油/油砂样品均显示出相似的傅里叶红外光谱特征,具体表现在:①极强的脂肪族吸收峰,分别对应于脂肪族基团伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1);②存在芳香烃吸收峰(约1600cm-1和900~700cm-1);③部分样品在1800~1600cm-1波段出现吸收峰,显示存在含氧化合物。(二)原油/油砂样品中分离出来的酸性组分如图1-3所示,原油/油砂样品酸性组分与原始原油/油砂样品相比,对应于脂肪族基团伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1)吸收峰明显减弱,而含氧官能团(1800~1600cm-1波段吸收峰)和芳香基吸收峰(约1600cm-1和900~700cm-1波段)显著增强,显示酸性组分中存在大量的含氧和芳香族化合物。(三)原油/油砂样品中酸性组分甲酯化产物如图1-3所示,经过酯化,原油/油砂样品酸甲酯组分与原油酸性组分相比,芳香族成分大为降低;对应于脂肪族基团伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1)吸收峰仍然明显;但各类含氧官能团(1800~1600cm-1)吸收峰显著增强,羰基、多环醌类和苯酚等含氧基团在苏丹高酸值原油酸甲酯组分中大量富集。渤海湾盆地原油酸甲酯组分中则缺少多环醌类,而西加拿大高酸值油砂抽提物酸甲酯组分中硫氧化合物为主要成分。原油酸值与原油本身及其酸甲酯组分的傅里叶红外光谱所反映的有机官能团特征的关系将在后续的章节中分地区展开讨论。四、高分辨率质谱揭示石油酸元素组成与化合物类型原油中酸性化合物相对分子质量一般不大于1000,主要分布在200~800之间,对应分子碳原子数一般分布在C10-C60,不同原油中酸性化合物相对分子质量存在较大差异,平均分子质量分布在420~550之间。下面以辽河油田欢127井原油的高分辨率质谱为例,说明石油酸元素组成与化合物类型研究方面的相关进展。图1-4a是该原油傅里叶转换质谱图,横坐标是质荷比,纵坐标为相对丰度;图1-4b和图1-4c为图1-4a的局部放大。在图1-4b中可以看到相差14.01565个质量单位的质谱峰系列,这些化合物具有相同的杂原子数量而相差不同个—CH2—亚甲基单元,只要鉴定出其中的一个分子组成,其他化合物很容易得到鉴定。通过精确分子质量可以在10-6误差范围内确定化合物分子式。同时,根据相邻同位素质谱峰强度,可以验证鉴定结果的可靠性及是否有不同化合物重叠在一起。图1-4c中8号峰即为4号峰的13C同位素峰。(一)原油高分辨率质谱资料解释由高分辨率质谱分析结果可以得到三个层次的组成信息(以欢127井原油为例,如图1-5所示):分子组成类型,即分子中C、H、O、N、S等原子的组合方式,一般将主要元素(C和H)的组成表示为分子缩合度及分子量大小,根据分子中含O、N、S杂原子组成不同的类型(如图1-5a),表示不同杂原子类型化合物的相对丰度;相同类型化合物根据分子不饱和度,即分子中双键和环的数目分为不同的组,而用分子通式CnH2n+ZOoNnSs中Z值大小反映同一类型不同缩合度化合物相对分布(图1-5b);对于同一组化合物,分子组成中相差n个—CH2—,其分布特征反映该组化合物分子量分布(如图1-5c)。石油酸性组分除常规的含有O2分子结构类型外,还有N1、NO、N1O2、O1、O3和O4等多种杂原子类型;O2类化合物分子缩合度分布范围在0(脂肪酸)~-34之间;不同缩合度化合物相对丰度趋于正态分布,但每一种缩合度化合物碳数分布规律并不一致。图1-4 欢127井原油Neg-ESI-FTMS质谱图当实验使用仪器磁场强度为7.0T时,在450Da质量数附近可得到大约100000的分辨率。这种分辨能力并不能精确分析出原油中所有化合物分子式构成,但对丰度相对较高的化合物仍然能够得到比较可靠结果。为保证解释结果的可靠性,可以仅对相对丰度较高的N、NO、NO2、O、O2、O3、O4类化合物进行定性,以这些化合物在质谱图上的相对丰度作为依据半定量地确定它们的相对含量。如图1-5所示,O1类化合物在大部分样品中含量不高,但个别样品中O1类的相对丰度超过O2,鉴定出的CnH2n+ZO类化合物中Z值最大值一般为-6,而这一缩合度正好和烷基酚类一致。由于人们已经证实石油中普遍存在苯酚类化合物,因此可以确定原油中O1类化合物主要为酚类,即O原子以羟基的形式联结在芳环上。图1-5 高分辨率质谱反映的化合物组成信息O2类化合物在大多数原油中丰度显示最强,分子通式为CnH2n+ZO2的化合物Z值分布在0~-34之间。分子中含有两个氧原子的化合物可能为羧酸或者二元醇。由于醚和酮在负离子ESI条件下难以电离,因此原油中O2类化合物分子中至少含有1个羟基。同时,由于二元醇的最小分子缩合度为Z=2,而原油样品中见到的Z值最大为0,故此可以推断原油中O2类化合物以羧酸为主。O3和O4类化合物在石油中含量一般较低,分子中含有1个羟基和1个羧基,或2个羧基。由于在负离子ESI模式下O3和O4类化合物的鉴定需要考虑小分子O1和O2在两个O2之间缔合的因素(Smith等,2006),对这些化合物类别的鉴定需要慎重。由于碱性氮化物在负离子ESI条件下不能被电离,原油样品高分辨率质谱中见到的N类化合物主要是非碱性氮化物。利用常规色谱-质谱等手段在石油及石油产品中鉴定出的非碱性氮化物主要有吡咯、吲哚、咔唑和苯并咔唑等,但前两者稳定性差,一般不会在原油中存在。反映N类化合物分子缩合度的Z值最大值一般为-15,这一数值与烷基咔唑对应;从热力学稳定性角度分析,Z=-15的N类化合物也最可能是咔唑。同时,N类化合物在大部分原油中表现出Z=-21和Z=-27优势,两者正好与苯并咔唑和二苯并咔唑类化合物的分子组成一致。因此可以推断,原油中N类化合物主要为吡咯类非碱性氮化物。N类化合物Z值下限为-43,但主要分布在-15~-27之间,即分子缩合度介于咔唑和二苯并咔唑之间。NO和NO2类化合物可解释为氮化物分子上另带有1个羟基或羧基,但由于缺乏这些化合物单个分子组成数据,目前尚无法对它们结构类型明确定性。(二)根据石油酸元素组成与化合物类型进行原油分类作者研究了来自中国辽河、渤海、塔河、新疆和苏丹等油田的原油样品,发现所有样品中都含有N1和O2化合物,在大多数原油中二者之和占已定量的O2、N1、NO、N1O2、O1、O3和O4等7类化合物相对丰度的80%以上,而且不同原油之间存在明显差异。以O2为例,其相对丰度占7类化合物的1%~93%之间;同时,在不同类型化合物相对丰度接近的原油,它们的石油酸分子缩合度和碳数分布也存在很大差异。根据高分辨率质谱揭示的杂原子类型、缩合度、碳数分布,我们将原油分为5种类型。下面分别描述不同组成类型的石油酸组成特征。1.A类原油环烷酸占绝对优势,以一—三环环烷酸为主。代表性样品为新疆9区浅层原油,油藏深度为618~606m,原油总酸值10.7mgKOH/g。其O2类化合物碳数分布如图1-6所示。多数高酸值原油具有A类组成特征,O2类相对丰度占50%以上,脂肪酸含量较低或很低,环烷酸一般以二环为主,一环和三环也有较高相对丰度,主峰碳出现在C25附近。图1-6 A类原油O2类化合物的碳数分布图2.B类原油环烷酸占优势,以四-五环环烷酸为主。根据O2类化合物Z值分布图中Z=-8和Z=-10两条曲线的分布特征将B类原油分为两个亚类。其中,B-1亚类原油中四环和五环环烷酸在O2类化合物中占绝对优势,在较宽碳数范围内四环和五环环烷酸均为主要的O2类化合物。代表性原油样品采自辽河油田清5井,储层深度为2050.6~2073.1m,原油总酸值为1.86mgKOH/g,其O2类化合物碳数分布见图1-7。图1-7 B-1类原油O2类化合物的碳数分布图B-2亚类原油中低碳数区域低缩合度环烷酸为主,而在C30和更高碳数区域四环和五环环烷酸优势明显。代表性原油样品为辽河油田洼70井沙三段储层,储层深度为1434.3~1457.6m,原油总酸值为4.48mgKOH/g。其O2类化合物碳数分布见图1-8。图1-8 B-2类原油O2类化合物的碳数分布图四环和五环环烷酸对应的Z值为-8和-10,但Z=-8和-10的化合物也可以是芳羧酸,高分辨率质谱并不能区分这两类化合物的结构类型,虽然B-1和B-2亚类原油均以Z=-8和Z=-10两类化合物为主,但后者的O2碳数分布在Z=-8和Z=-10两条曲线上,在高于C30后有一明显突跃,可能与较高丰度的四环和五环环烷酸有关,五环环烷酸可能主要是藿烷酸,而四环环烷酸可能与甾烷酸(或其异构体)有关。3.C类原油C类原油有机酸以脂肪酸为主,根据原油中含N和O2类化合物的相对丰度,将C类原油分为两个亚类。C-1亚类原油,O2类化合物占绝对优势,且以脂肪酸为主。代表性样品为辽河油田高101井2168.6~2162.9m井段的原油,原油总酸值为3.76mgKOH/g。其O2类化合物碳数分布见图1-9。图1-9 C-1亚类原油O2类化合物的碳数分布图C-2亚类原油中N类化合物占优势,含有较多的NO和NO2类化合物,O2以脂肪酸为主。代表性样品为辽河油田曙116井3996~4050m井段原油,原油总酸值为11.9mgKOH/g,O2类化合物碳数分布特征与C-1亚类原油相似。C类原油脂肪酸相对丰度远高于环烷酸,显示C16和C18脂肪酸优势,但并不一定是主峰,高碳数脂肪酸分布范围较宽且具有较强相对丰度。该类原油FTMS谱图中N类化合物丰度有高有低,大部分N丰度高的样品含有较高丰度的NO和NO2类化合物。4.D类原油D类原油中含氮化合物丰度与含氧化合物相比占绝对优势,以N1类化合物为主。代表性样品为塔河油田S77井5965~6000m井段原油,原油总酸值为0.77mgKOH/g,其O2类化合物碳数分布见图1-10。其中O2类化合物含量很低,Z=0和Z=-2曲线显示明显的C16和C18优势。图1-10 D类原油O2类化合物的碳数分布图5.E类原油E类原油含有大量卤代烃。代表性样品为塔河油田TK101井4557~4563m井段原油,原油总酸值高达20.0mgKOH/g,其O2类化合物碳数分布见图1-11。质谱图中出现很强的间隔58个质量单位的峰簇,峰簇中峰数量、相对丰度以及相关两个质量单位的分布特征均与卤代烃的特征一致,但这些化合物的精确分子组成尚不能确定。该类原油虽然表现很高的酸值,但O2类化合物丰度很低,分布特征与低酸值的D类原油相似。图1-11 E类原油FTMS质谱图几种代表性原油的杂原子类型、O2类缩合度分布、N1类缩合度分布图分别如图1-12~图1-14所示。石油酸杂原子类型复杂,主要有N、NO、NO2、O、O2、O3和O4等杂原子类型,其中N和O2是丰度最高的化合物类型,不同类型化合物的相对丰度在不同原油中差异明显。如果不考虑地质因素,原油总酸值与其中某一石油酸化合物的含量之间没有明显的相关性。图1-12 典型原油石油酸杂原子组成五、酸性含氧化合物的分子组成(一)研究现状含氧化合物组成能够为研究原油成因及生物降解作用提供重要信息,这早已引起研究者的关注。虽然在一些沉积物或低熟原油中鉴定出了很多化合物类型,然而关于原油中含氧化合物的组成至今仍不是十分清楚,主要有两个原因:一是含氧化合物分离困难,原油中含氧化合物含量很低,分子量分布及极性差异很大,传统的分离方法很难在保证回收率的前提下实现高纯度分离;另一方面原因是没有合适的分析表征手段,含氧化合物(如羧酸)极性较强,色谱分析前需要衍生化处理,气相色谱是目前分离单体化合物最有效手段,但只能分析原油中分子质量相对较小的化合物,同时含氧化合物异构体种类繁多,即使在高效毛细管气相色谱柱上也不能得到单体分离。图1-13 典型原油石油酸中O2类化合物缩合度分布图1-14 典型原油石油酸中N1类化合物缩合度分布石油酸组成是近年来石油化学研究热点之一。最新有关石油酸的研究成果主要基于质谱技术对其分子类型分布的结果,通过软电离质谱得到石油酸的组成特点及分布规律。由于石油酸组成非常复杂,研究石油酸单体化合物的文献较少,分析手段一般为气相色谱—质谱法。目前从原油中已经鉴定出的含氧化合物包括醚、醇、酮、羧酸、酚及酯类化合物,一些杂环含氧化合物(如二苯并呋喃)富集在芳烃样品中,非常容易检出,其他含氧化合物的分离比较困难;小分子苯酚类化合物近年来被用于石油运移研究,大部分C0—C3苯酚单化合物已经通过标样得到准确鉴定;醇、酮类化合物在原油中含量很低,目前主要对正构脂肪族醇、酮进行了结构鉴定。羧酸类化合物是原油中含量最丰富的含氧化合物,相关研究报告最多。丁安娜等(2004)在大庆原油中鉴定出正构一元酸(C10—C33)、正构二元酸(C10—C25)、姥鲛烷酸、植烷酸、藿烷酸(C30—C33)和甾烷酸(C27—C29)等多种酸性化合物类型;在一些低熟原油、生物降解原油(Jaffé和Gallardo,1993)、沉积物(Azevedo等,1994)或沥青质钌离子氧化产物(王培荣,2002)中存在相对丰度较高的甾、萜类羧酸化合物。(二)高酸值原油中含氧化合物结构鉴定高酸值原油石油酸经改性氧化铝吸附柱分离,通过气相色谱-质谱分析甲酯化酸性化合物组成,典型石油酸甲酯的总离子流色谱图如图1-15所示,3个样品谱图特征分别对应不同酸值的代表性原油。不同原油的石油酸组成差异很大,本节中所鉴定出的羧酸类化合物实际是其对应的甲基酯。鉴定出的单体化合物主要有脂肪酸、环烷酸、芳羧酸和内酯类等几种类型。图1-15 典型石油酸甲酯总离子流色谱图(IS-1和IS-2为内标;C12-C24为正构脂肪酸;X为污染峰)1.脂肪酸根据FTMS质谱分析结果,石油酸分子式CnH2n+ZO2中Z值为0的化合物主要对应脂肪酸类,原油中普遍存在脂肪酸,但与环烷酸的相对浓度差异很大,辽河油田高1井原油中CnH2n+ZO2类化合物相对含量十分丰富,其脂肪酸甲基酯的质量色谱图如图1-16所示。m/z74、m/z88和m/z102分别代表正构、α位和β位甲基取代的长链脂肪酸,正构C16、C18脂肪酸在m/z74质量色谱图中显示较强的相对丰度,非常容易识别,正构脂肪酸分子碳原子数分布在C9—C34之间,大部分原油中都呈偶碳优势。姥鲛烷酸和植烷酸分别为m/z88和m/z102质量色谱图上的基峰。类异戊二烯类长链羧酸在几个低熟原油样品中含量很高,碳数分布在C17—C21之间,其他异构脂肪酸相对含量较低,分子结构难以鉴定。图1-16 高1井原油脂肪甲酯质量色谱图在一些脂肪酸含量较高的样品中鉴定出C16和C18不饱和脂肪酸,后者质量色谱图如图1-16所示,C16、C18不饱和脂肪酸在FTMS分析时可以看到Z=-2系列化合物异常的碳数分布,这些化合物理论上不应该存在于成熟原油中,可能来自取样和实验过程的污染,因为这两种化合物在自然环境中普遍存在。如果C16与C18不饱和脂肪酸是由污染带入,那么正构C16和C18的含量也可能存在不确定性,因为这两种化合物和不饱和脂肪酸一样容易由污染引入,而不同实验室间关于这两个化合物较差的实验重复性也可以作为这一推论的依据。2.芳羧酸关于芳羧酸的文献报道很少,Haug等(1968)在GreenRiver页岩抽提物中鉴定出一环和二环几个芳羧酸系列,Watson等(2002)在实验室中模拟石油生物降解过程,在降解初期的原油样品中分离出烷基苯羧酸系列化合物,认为芳羧酸是生物降解产物。在作者研究的样品中发现部分样品富含芳羧酸,如:渤海湾盆地PL19-3-2井DST2层、辽河油田兴603井等。芳羧酸的类型很多,包括一—五环的芳香酸,芳基骨架结构与芳烃化合物相对应。图1-17~图1-24为辽河油田兴603井原油中芳羧酸的质量色谱图,分别为烷基苯甲酸、烷基萘羧酸、三环芳羧酸、四环芳羧酸、五环芳羧酸、单芳甾烷酸及三芳甾烷酸。烷基苯类羧酸分布范围最宽,在质量色谱图中能够清晰地确定C0—C18烷基苯羧酸系列。图1-17 烷基苯甲酸酯质量色谱图图1-18 烷基萘羧酸酯质量色谱图图1-19 烷基三环芳羧酸酯质量色谱图图1-20 烷基四环(芘类)芳羧酸酯质量色谱图3.环烷酸图1-23~图1-25是常见环烷酸的质量色谱图。藿烷酸是较早被发现和鉴定的具有分子标志意义的一类重要酸性化合物,藿烷酸的形成被认为是藿烷遭受生物降解的产物,未降解原油一般不含藿烷酸,随着生物降解程度的增加,藿烷酸含量增加,而当生物降解非常严重时藿烷酸遭降解而消失。以前的研究表明,藿烷酸存在于生物降解原油中,而未降解和严重降解原油中藿烷酸含量较低。在我们研究过的绝大部分原油样品中均检测出藿烷酸,但它们的相对组成有较大变化。图1-21 烷基四环(类)芳羧酸酯质量色谱图图1-22 烷基五环(苯并芘类)芳羧酸酯质量色谱图图1-23 单芳甾烷酸酯质量色谱图图1-24 三芳甾烷酸质量色谱图图1-25 三环萜烷及藿烷酸质量色谱图对应化合物鉴定见表1-5表1-5 藿烷酸鉴定表续表4.内酯类化合物在加拿大西部盆地大部分油砂样品中鉴定出了C10—C18脂肪酸内酯化合物,这些化合物的质量色谱图如图1-26所示,具有特征的m/z57、m/z71和m/z85碎片,容易误判为正构烷烃;但它们的质谱图与正构烷烃的显著差别是等高质荷比的碎片强度在m/z85和m/z99之间存在明显的台阶。这些化合物是由β-、χ-或δ-羟基酸分子内脱水而成在成熟原油中不大可能是原生的。图1-26 内酯类化合物m/z85质量色谱图及质谱图六、石油酸的二维色谱/质谱鉴定二维色谱技术是国外在20世纪90年代早期开始研发的新兴分析技术(Phillips和Liu,1992)。这项技术最先运用于环境样品分析,通过采用二重色谱联用,使得色谱分析复杂混合物的能力得到极大的改进(Dalluge等,2003;Zrostlikova等,2003)。使用飞行时间质谱检测器,质谱图采集的速度可以达到每秒500张,进而满足样品分析时数据快速采集的要求。将这些色质的硬件条件与专用的质谱去褶合软件相结合,就可以得到分析过程中分离的单个化合物的质谱图。由于原油酸甲酯组分成分极为复杂,Hao等(2005)首先用加拿大合成油公司、Acros和Fluka公司的三个商业环烷酸样品进行了方法试验。图1-27 Fluka环烷酸标样的二维色质重建总离子流色谱(下)和无环正构脂肪酸二维质量色谱图(上)前人对商业环烷酸样品在甲酯化和季丁基甲基硅烷化后进行一维色质分析,重建总离子流色谱通常表现为一个大鼓包,无法分开三家公司生产的三个环烷酸样品。但是,运用二维色谱技术,我们可以得到许多分辩效果较好的色谱峰(图1-27)。从图1-27可以看出,利用特征的m/z87、m/z101、m/z115、m/z129和m/z143质量色谱图,可以检测各类无环正构脂肪酸(Z=0)的同系物分布。这里,由于m/z74质量色谱图强度较低,噪音明显,没有加入重建质量色谱图中。同样,利用m/z127、m/z141、m/z155、m/z169、m/z183、m/z197、m/z211、m/z225和m/z239质量色谱图,可以检测各类单环长链脂肪酸(Z=-2)的同系物分布(图1-28)。而且,三种环烷酸标样在这些化合物分布上的指纹特征是显著不同的。通过选取特定(X,Y)保留时间的化合物质谱图,并利用谱库检索,可以对这些化合物进行结构定性(图1-29)。运用二维色质,很难将这些环烷酸样品中的二环及其多环脂肪酸类(Z=-4,-6和-8)完全分离成单个化合物,进而提供足够的结构信息。实际运用二维色质分析原油和油砂样品,尚需要大量的实验室方法试验工作。图1-28 三种环烷酸标样的二维色质无环正构脂肪酸(Z=0)和单环长链脂肪酸(Z=-2)的重建质量色谱图图1-29 环烷酸标样的二维色质无环正构脂肪酸(Z=0)和单环长链脂肪酸Z=-2)的重建质量色谱放大图及单个化合物的质谱图官方服务官方网站

很多时候衣服的成分表会出现“聚酯纤维”,这是一种什么材料?

信行
技也
中国的商品名为涤纶,在服装行业又叫冰丝。聚酯纤维(polyesterfibre ju xiɑnwei)是由有机二元酸和二元醇缩聚而成的聚酯经纺丝所得的合成纤维。涤纶具有许多优良的纺织性能和服用性能,用途广泛,可以纯纺织造,也可与棉、毛、丝、麻等天然纤维和其他化学纤维混纺交织,制成花色繁多、坚牢挺刮、易洗易干、免烫和洗可穿性能良好的仿毛、仿棉、仿丝、仿麻织物。涤纶织物适用于男女衬衫、外衣、儿童衣着、室内装饰织物和地毯等。由于涤纶具有良好的弹性和蓬松性,也可用作絮棉。在工业上高强度涤纶可用作轮胎帘子线、运输带、消防水管、缆绳、渔网等,也可用作电绝缘材料、耐酸过滤布和造纸毛毯等。用涤纶制作无纺织布可用于室内装饰物、地毯底布、医药工业用布、絮绒、衬里等。聚酯纤维的优点聚酯纤维具有较高的强度与弹性恢复能力,因此坚牢耐用、抗皱免烫。它的耐光性较好,除比腈纶差外,其耐晒能力胜过天然纤维织物,尤其是在玻璃后面的耐晒能力很好,几乎与腈纶不相上下。另外聚酯面料耐各种化学品性能良好,酸、碱对其破坏程度都不大,同时不怕霉菌,也不怕虫蛀。聚酯纤维的缺点聚酯纤维的吸湿性差,吸水性不强,抗熔性差,容易吸附灰尘,是由于其质地所致;然后就是透气性较差,不容易透气;最后就是其染色性能较差,须要在高温下用分散性染料染色。目前市面上还流行聚酯纤维阳光面料,这样的面料有很多的优秀,遮阳、透光、通风、隔热、防紫外线、防火、防潮、易清洗等特点,是一种非常好的面料,主要用于服饰制造,很受现代人的欢迎。如果您想选择更舒更高档的面料仿丝棉就是不错的选择!拓展资料:涤纶和天然纤维相比存在含水率低、透气性差、染色性差、容易起球起毛、易沾污等缺点。为了改善这些缺点,采取化学改性和物理变形的方法。化学改性方法有:①添加有亲水基团的单体或低聚体聚乙二醇等进行共聚,能提高纤维的吸湿率;②添加具有抗静电性能的单体进行共聚,可以提高纤维的抗静电和抗沾污性能;③添加含磷、含卤素和锑的化合物以改善纤维耐燃烧性能;④采用较低聚合度的聚酯纺丝以提高抗起球能力;⑤与亲染料基团的单体(如磺酸盐等)进行共聚,以改善纤维的染色性能。经过物理变形的有各种异形涤纶、与其他高聚物复合纺丝、着色的涤纶、细旦涤纶和高收缩涤纶等。

雪尼绒布料和聚酯纤维哪个好?

集报王
毁童年
聚酯纤维面料(polyester fibre)由有机二元酸和二元醇缩聚而成的聚酯经纺丝所得的合成纤维。聚酯链研究报告指出:工业化大量生产的聚酯纤维是用聚对苯二甲酸乙二醇酯制成的,中国的商品名为涤纶。是当前合成纤维的第一大品种。

羊毛面料和聚酯纤维面料各有什么特点

翦翦风
老明星
您好,1、纯羊毛面料:100%羊毛成分,手感柔软而富有弹性,身骨挺括、不板、不烂。有膘光感,颜色纯正,光泽自然柔和。精纺类大手多为薄型和中型,表面光洁平整,质地精致细腻,纹路清晰,悬垂感较好。粗纺类大多为中厚型和厚型,呢面丰满,质地或蓬松或致密,手感温暖、丰厚。纯羊毛面料用手紧握、抓捏松开后基本无折皱,有轻微折痕也可在短时间内褪去,很快恢复平整。2、聚酯纤维面料:是由有机二元酸和二元醇缩聚而成的聚酯经纺丝所得的合成纤维。就是俗称的涤纶,被广泛运用于服饰面料,涤纶有优良的耐皱性、弹性和尺寸稳定性、绝缘性能好、用途非常的广泛,适用于男女老少的衣着。聚酯纤维具有较高的强度与弹性恢复能力,因此坚牢耐用、抗皱免烫。它的耐光性较好,除比腈纶差外,其耐晒能力胜过天然纤维织物,尤其是在玻璃后面的耐晒能力很好,几乎与腈纶不相上下。另外聚酯面料耐各种化学品性能良好,酸、碱对其破坏程度都不大,同时不怕霉菌,也不怕虫蛀。聚酯纤维的吸湿性差,是由于其质地所致;然后就是透气性较差;最后就是其染色性能较差,须要在高温下用分散性染料染色。希望我的回答能够帮到您~~

2WT属于什么材质

收养昆弟
放浪者
2WT材质是聚酯纤维。聚酯纤维具有一系列优良性能,如断裂强度和弹性模量高,回弹性适中,热定型效果优异,耐热和耐光性好。聚酯纤维的熔点为255℃左右,玻璃化温度约70℃,在广泛的最终用途条件下形状稳定,织物具有洗可穿性,另外,还具有优秀的阻抗性(诸如,抗有机溶剂、肥皂、洗涤剂、漂白液、氧化剂)以及较好的耐腐蚀性,对弱酸、碱等稳定,故有着广泛的服用和产业用途。扩展资料聚酯纤维作用:提高水稳定性沥青路面的水稳性是指沥青路面在水存在的条件下,经受交通荷载和温度涨缩的反复作用。聚酯纤维的加入,使沥青膜增厚,使水置换沥青的强度减小,以及水分渗入沥青混凝土量的减少,再加上纤维的吸附作用使沥青的粘滞度变大,提高了沥青与集料的粘结作用力,加强沥青混合料中沥青与集料形成的界面膜抵抗水分剥离作用的能力,从而提高了沥青混合料的水稳定性。参考资料来源:百度百科-聚酯纤维

2WT.桃皮绒.人造丝.聚酯有什么区别?

宋人围之
富豪榜
2WT在日本就是桃皮绒,主要成分都是涤纶弹丝名称不同而已。 常用于沙滩裤的比较多优点;价格便宜、快干、手感好,缺点;不显档次、轻微掉色。人造丝主要成分是有机化合物(纤维素) 用天然的聚合物为原料,经化学方法制成的在化学组成上与原聚合物基本上相同的化纤丝,如粘胶丝、铜氨丝等,是用含有纤维素物质的棉短丝绒,木材、芦苇基含有蛋白质纤维的花生、大豆等制成的长丝。其中粘胶丝具有光亮柔软、吸水性好、易染色、不起球、悬性好的特点,缺点湿强度较低,而磨度欠佳,常用于编织针织内衣、时装及装饰织物等。 聚酯是做2WT和桃皮绒的原材料 (涤纶)聚酯纤维(polyester fibre)由有机二元酸和二元醇缩聚而成的聚酯经纺 丝所得的合成纤维。聚酯链研究报告指出:工业化大量生产的聚酯纤维是用聚对苯二甲酸乙二醇酯制成的,中国的商品名为涤纶。是当前合成纤维的第一大品种。下面来看看聚酯纤维是什么。 如果做中高档的建议用人造丝类的,抵挡跑量的就桃皮绒吧

聚酯纤维面料的介绍

导盲犬
练习曲
聚酯纤维面料(polyester fibre)由有机二元酸和二元醇缩聚而成的聚酯经纺丝所得的合成纤维。聚酯链研究报告指出:工业化大量生产的聚酯纤维是用聚对苯二甲酸乙二醇酯制成的,中国的商品名为涤纶。是当前合成纤维的第一大品种。涤纶的比重为1.38;熔点255~260℃,在205℃时开始粘结,安全熨烫温度为135℃;吸湿度很低,仅为0.4%;长丝的断裂强度为4.5~5.5克/旦,短纤维为3.5~5.5克/旦;长丝的断裂伸长率为15~25%,短纤维为25~40%;高强型纤维强度可达7~8克/旦,伸长为7.5~12.5%。涤纶有优良的耐皱性、弹性和尺寸稳定性,有良好的电绝缘性能,耐日光,耐摩擦,不霉不蛀,有较好的耐化学试剂性能,能耐弱酸及弱碱。在室温下,有一定的耐稀强酸的能力,耐强碱性较差。涤纶的染色性能较差,一般须在高温或有载体存在的条件下用分散性染料染色。涤纶具有许多优良的纺织性能和服用性能,用途广泛,可以纯纺织造,也可与棉、毛、丝、麻等天然纤维和其他化学纤维混纺交织,制成花色繁多、坚牢挺刮、易洗易干、免烫和洗可穿性能良好的仿毛、仿棉、仿丝、仿麻织物。涤纶织物适用于男女衬衫、外衣、儿童衣着、室内装饰织物和地毯等。由于涤纶具有良好的弹性和蓬松性,也可用作絮棉。在工业上高强度涤纶可用作轮胎帘子线、运输带、消防水管、缆绳、渔网等,也可用作电绝缘材料、耐酸过滤布和造纸毛毯等。用涤纶制作无纺织布可用于室内装饰物、地毯底布、医药工业用布、絮绒、衬里等。

聚酯纤维是什么面料?

田仲
善哉观乎
聚酯纤维面料由有机二元酸和二元醇缩聚而成的聚酯经纺丝所得的合成纤维。聚酯链研究报告指出:工业化大量生产的聚酯纤维是用聚对苯二甲酸乙二醇酯制成的,中国的商品名为涤纶。涤纶有优良的耐皱性、弹性和尺寸稳定性,有良好的电绝缘性能,耐日光,耐摩擦,不霉不蛀,有较好的耐化学试剂性能,能耐弱酸及弱碱。在室温下,有一定的耐稀强酸的能力,耐强碱性较差。涤纶的染色性能较差,一般须在高温或有载体存在的条件下用分散性染料染色。扩展资料:聚酯纤维面料具有其它面料所不具备的阻燃性能,真正的聚酯纤维面料燃烧过后会残留内部骨架玻璃纤维,所以不会变形,而普通面料燃烧过后无任何残留。聚酯面料的抗熔性较差,遇着烟灰、火星等易形成孔洞。因此,涤纶面料穿着时应尽量避免烟头、火花等的接触。吸湿性较差,穿着有闷热感,同时易带静电、沾污灰尘,影响美观和舒适性。