欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

大数据和数据挖掘什么区别?

神人无功
俏冤家
去百度文库,查看完整内容>内容来自用户:天成信息大数据和数据分析区别   大数据是指用现有的计算机软硬件设施难以采集、存储、管理、分析和使用的超大规模的数据集。大数据具有规模大、种类杂、快速化、价值密度低等特点(4V特性)。大数据的“大”是一个相对概念,没有具体标准,如果一定要给一个标准,那幺10-100TB通常称为大数据的门槛。     数据分析是一个大的概念,理论上任何对数据进行计算、处理从而得出一些有意义的结论的过程,都叫数据分析。从数据本身的复杂程度、以及对数据进行处理的复杂度和深度来看,可以把数据分析分为以下4个层次:数据统计,OLAP,数据挖掘,大数据。     大数据分析和数据分析是有区别和联系的。这里重点关注两者的是技术要求、使用场景、业务范围等方面的区别和联系。重点要区分理论研究和实际应用两方面区别和联系。    第一:在分析方法上两者并没有本质不同    数据分析的核心工作是人对数据指标的分析、思考和解读,人脑所能承载的数据量是极其有限的。所以,无论是“传统数据分析”,还是“大数据分析”,均需要将原始数据按照分析思路进行统计处理,得到概要性的统计结果供人分析。两者在这个过程中是类似的,区别只是原始数据量大小所导致处理方式的不同。     第二:在对统计学知识的使用重心上两者存在较大的不同    传统数据分析”使用的知识主要围绕“能否通过少量的抽样数据来推测真实世界”的主题展开。“大

大数据 和 数据挖掘 的区别

截拳道
星闪闪
去百度文库,查看完整内容>内容来自用户:天成信息大数据和数据分析区别   大数据是指用现有的计算机软硬件设施难以采集、存储、管理、分析和使用的超大规模的数据集。大数据具有规模大、种类杂、快速化、价值密度低等特点(4V特性)。大数据的“大”是一个相对概念,没有具体标准,如果一定要给一个标准,那幺10-100TB通常称为大数据的门槛。     数据分析是一个大的概念,理论上任何对数据进行计算、处理从而得出一些有意义的结论的过程,都叫数据分析。从数据本身的复杂程度、以及对数据进行处理的复杂度和深度来看,可以把数据分析分为以下4个层次:数据统计,OLAP,数据挖掘,大数据。     大数据分析和数据分析是有区别和联系的。这里重点关注两者的是技术要求、使用场景、业务范围等方面的区别和联系。重点要区分理论研究和实际应用两方面区别和联系。    第一:在分析方法上两者并没有本质不同    数据分析的核心工作是人对数据指标的分析、思考和解读,人脑所能承载的数据量是极其有限的。所以,无论是“传统数据分析”,还是“大数据分析”,均需要将原始数据按照分析思路进行统计处理,得到概要性的统计结果供人分析。两者在这个过程中是类似的,区别只是原始数据量大小所导致处理方式的不同。     第二:在对统计学知识的使用重心上两者存在较大的不同    传统数据分析”使用的知识主要围绕“能否通过少量的抽样数据来推测真实世界”的主题展开。“大

大数据的特点主要有什么?

肥皂盘
目标战
大数据的主要特点有:准确(Veracity)这是一个在讨论大数据时时常被忽略的一个属性,部分原因是这个属性相对来说比较新,尽管它与其他的属性同样重要。这是一个与数据是否可靠相关的属性,也就是那些在数据科学流程中会被用于决策的数据(而这不同于与传统的数据分析流程),精确性与信噪比(signal-to-noise ratio)有关。例如,在大数据中发现哪些数据对商业是真正有效的,这在信息理论中是个十分重要的概念。由于并不是所有的数据源都具有相等的可靠性,在这个过程中,大数据的精确性会趋于变化,如何增加可用数据的精确性是大数据的主要挑战。高速(Velocity)大数据是在运动着的,通常处于很高的传输速度之下。它经常被认为是数据流,而数据流通常是很难被归档的(考虑到有限的网络存储空间,单单是高速就已经是一个巨大的问题)。这就是为什么只能收集到数据其中的某些部分。如果我们有能力收集数据的全部,长时间存储大量数据也会显得非常昂贵,所以周期性的收集数据遗弃一部分数据以节省空间,仅保留数据摘要(如平均值和方差)。 这个问题在未来会显得更为严重,因为越来越多的数据正以越来越快的速度所产生。体量(Volume)大数据由大量数据组成,从几个TB到几个ZB。这些数据可能会分布在许多地方,通常是在一些连入因特网的计算网络中。一般来说,凡是满足大数据的几个V的条件的数据都会因为太大而无法被单独的计算机处理。单单这一个问题就需要一种不同的数据处理思路,这也使得并行计算技术(例如MapRece)得以迅速崛起。多样(Variety)在过去,数据或多或少是同构的,这种特点也使得它更易于管理。这种情况并不出现在大数据中,由于数据的来源各异,因此形式各异。这体现为各种不同的数据结构类型,半结构化以及完全非结构化的数据类型。

大数据的特点主要是什么?

六月虫
本在于上
大数据技术是指从各种各样海量类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。大数据具备以下4个特点:一是数据量巨大。例如,人类生产的所有印刷材料的数据量仅为200PB。典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。二是数据类型多样。现在的数据类型不仅是文本形式,的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。四是价值密度低。以视频为例,一小时的视频,在不间断的测试过程中,可能有用的数据仅仅只有一两秒。

毕业论文hadoop与大数据理论研究

贾晋蜀
形化
已经发送邮箱,请接收!

大数据领域生命周期理论研究

梦之队
野战排
去百度文库,查看完整内容>内容来自用户:聚考拉大数据领域生命周期理论研究  摘要:本文主要介绍大数据的生命周期,分析它已经发展到哪个程度,它的发展符合市场开发生命周期,各阶段大家对待一项新技术的态度,利用“web of science”权威文献数,利用excel作平滑曲线分析大数据的发展趋势,并作出它符合市场开发生命周期的特征描述,进一步分析大数据的生命周期阶段。  关键词:大数据;生命周期;变革  一、引言  大数据开启了重大的时代转型,是一场思维的大变革,在这个不断发展、不断创新、落后就被淘汰的时代,研究大数据是什么,大数据的发展到什么阶段,如何为我们所用,可以使我们及时把握机会,应用技术,获得价值具有重要意义。  二、生命周期的一般概述  所谓生命周期,通俗地讲是指一个事物或生物或一项技术等从“摇篮到坟墓”的整个过程。根据市场发展生命周期理论,可以将市场的发展按照其市场成熟度分成8个阶段,包括早期市场期期、鸿沟期、保龄球道期和龙卷风时期、成熟期、衰退期、断层期和生命结束期。  图1市场发展生命周期成熟过程  根据市场成熟的过程划分的生命周期过程中,每个阶段都具有自己特有的特征,同时也也有不相同的适用创新形式。  三、大数据的生命周期  (一)大数据的概念  (三)大数据的发展  基金项目:重庆市社会科学规划博士项目(

都说大数据好,大数据分析的原理和潜力怎么样啊?

其弟子曰
都说大数据好打出分析原理和潜力。

什么是大数据专业?

吾郎
柳也
1、大数据属于数学一类的专业。相关专业名称有:“信息与计算科学”、“数学与应用数学”、“统计学”等。大数据是众多学科与统计学交叉产生的一门新兴学科。大数据牵扯的数据挖掘、云计算一类的,所以是数学一类的专业。(1)统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。(2)数学与应用数学是一个学科专业,该专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练。能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。(3)信息与计算科学专业是以信息领域为背景用将迈向的数学与信息,管理相结合的交叉学科更深入和专业。2、大数据专业简介大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。大数据领域对于人才的需求总量大、层次多、范围广,产业对于人才的需求呈井喷式增长,相关行业拥有海量的岗位需求。

什么是大数据,通俗的讲

必有真宰
绚香
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产,简单来说大数据就是海量的数据,就是数据量大、来源广、种类繁多(日志、视频、音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据。大数据的7大特征:海量性,多样性,高速性,可变性,真实性,复杂性,价值性随着大数据产业的发展,它逐渐从一个高端的、理论性的概念演变为具体的、实用的理念。很多情况下大数据来源于生活。比如你点外卖,准备什么时候买,你的位置在哪,商家位置在哪,想吃什么……这都是数据,人一多各种各样的信息就越多,还不断增长,把这些信息集中,就是大数据。大数据的价值并不是在这些数据上,而是在于隐藏在数据背后的——用户的喜好、习惯还有信息。