欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研究生,关于云计算和大数据方向的专业有那些?它的重点大学有哪些?

独往独来
若能射乎
应用数学或者计算机。某些学校开设转么的专业,你可以去相关的学校网站查询。重点大学可以参见教育部的学科排名,最权威

数据科学与大数据技术考研,可以考那些方向

京房
教诲之人
首先,从当前大数据领域的人才需求情况来看,以研究生为代表的高端人才有的机会获得高附加值的工作岗位,而且由于当前大数据技术尚处在落地应用的初期,所以未来大数据领域还会需要大量高端应用型人才(专硕),从这个角度来看,当前大数据专业的本科生,选择考研是不错的选择。大数据专业考研有多种选择,可以根据自身的发展规划、知识结构和能力特点来进行选择,同时也要考虑到行业发展趋势和技术发展趋势。从目前大数据方向研究生的培养渠道来看,计算机专业是一个重要的培养渠道,同时统计学、经济学、金融等专业,也有培养大数据方向研究生的能力。由于当前大数据专业的开设时间比较短,所以很多大数据专业还没有硕士点,要想有更大的选择空间,可以选择跨考计算机等专业。大数据专业的本科生在读研时,在方向的选择上还是比较多的,除了可以考虑大数据相关方向之外,还可以考虑人工智能领域的相关方向,包括自然语言处理、计算机视觉、机器学习等。如果选择专硕,可以重点考虑如何通过大数据技术与行业相结合,在产业结构升级的过程中,行业领域也有很多创新点。最后,在选择主攻方向的过程中,还需要考虑到学校自身的学科实力、行业资源整合能力等因素,选择学科实力比较强的方向往往会有更好的科研体验,而选择行业资源比较丰富的方向,往往对于就业有非常积极的影响。

考研大数据:国内研究生一学年的费用一般是多少

问仁
一般情况下,国内的研究生分为学术型硕士和专业型硕士,一般学术型硕士的学费为每人每年8000元,专业型硕士研究生的学费一般为每人每年7000元,不包含住宿费。当然这个费用只是个大概,具体的每个大学的费用都不一样,不同的专业也有所不同,甚至还会受大学所在地的经济水平的影响,比如同样是环境工程专业,北京某高校的学费大概5000+,而西北某高校大概为4000+。再说具体点呢,就比如在重庆,学费7000一年,生活费吃饭每月600元吃食堂足矣,房租学校的公寓,非常便宜每年500,一般是每年1200,另外加电话费每月50,网络每月50,这些就是最低的开支,如果某些特别收费高的专业和学校,或你自己在外面租房,生活标准更高,其他开支,这就另当别论。在中国绝大多数学校,大多数专业,按一般的生活标准,两万足矣。如果你是留学生,可能会更高。

考研想考大数据方向的研究生,请问有什么合适的

履之适也
莫动则平
复旦大学大数据学院

大数据采集与管理专业考研学校名单

去丧
鬼附身
你再这里问人太少了,你得去大数据采集和管理专业的考研论坛,那里面全是考天大的,无论是专业资料,学习技巧,还是学长学姐都比这样提问来的好,是考研论坛不是贴吧,去看看,满意采纳奥,谢谢,真心希望帮到你,考研不易,加油!不懂的话我,一定帮忙。

★大数据挖掘在职研究生哪个学校有

龙须沟
其热焦火
中国人民大学有大数据方向的课程。数据挖掘与应用统计、大数据与应用统计、大数据与云计算等方向的课程都与大数据相关。中国人民大学是大数据人才培养基地。中国人民大学的大数据是国家重点学科,拥有强大的院系支持,丰富的校友资源,以及最强的师资阵容。不论是数据挖掘,还是数据统计,云计算。中国人民大学的大数据都处于领先地位。北 京航空航天大学在职研究生好像是有吧

大数据工程考研方向有哪些?

道熙呀
如果爱
海量数据分布式处理系统的设计和搭建、分布式文件存储和分布式数据处理能力、大规模数据存储、实时计算系统的规划设计、实现一个基于MapRece的并行算法、部署Hive并实现一个的数据操作

如何考大数据的研究生

处女作
森子
一般情况下,国内的研究生分为学术型硕士和专业型硕士,一般学术型硕士的学费为每人每年8000元,专业型硕士研究生的学费一般为每人每年7000元,不包含住宿费。当然这个费用只是个大概,具体的每个大学的费用都不一样,不同的专业也有所不同,甚至还会受大学所在地的经济水平的影响,比如同样是环境工程专业,北京某高校的学费大概5000+,而西北某高校大概为4000+。再说具体点呢,就比如在重庆,学费7000一年,生活费吃饭每月600元吃食堂足矣,房租学校的公寓,非常便宜每年500,一般是每年1200,另外加电话费每月50,网络每月50,这些就是最低的开支,如果某些特别收费高的专业和学校,或你自己在外面租房,生活标准更高,其他开支,这就另当别论。在中国绝大多数学校,大多数专业,按一般的生活标准,两万足矣。如果你是留学生,可能会更高。

哪些大学开设了大数据专业,并且已经有了应届毕业生

始作
第五个
国论文网http://www.xzbu.com/1/view-7050455.htm关键词:民院校;大数据;人才培养一、大数据技术概述最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。二、国内外研究现状国外除了在大数据的概念上的研究外,重点放在技术研究。美国政府六个部门启动的大数据研究计划中,绝大多数研究项目都是应对大数据带来的技术挑战,重视的是数据工程而不是数据科学,主要考虑大数据分析算法和系统的效率。国内在大数据研究领域的重点在大数据与云计算、数据挖掘,并行计算和分布式处理,应用式主要集中在地理信息系统。但目前国内高校很少有开设大数据方向的相关专业,业内先驱当属北航软件学院大数据技术与应用专业。此专业是北航软件学院、北航计算机学院与慧科教育(工信部移动云计算教育培训中心)联合打造的大数据技术与应用专业,于2012年开始招收工程硕士。另外,2013年,华东师范大学成立了数据科学与工程研究院;2014年,华南理工大学设立了云计算与大数据专业;同年,清华大学成立“清华―青岛数据科学研究院”,设立大数据的硕士博士学位项目。另外,开设大数据相关本科专业的院校有贵州师范学院、贵州大学和北京城市学院。而2014年9月开始,西安欧亚学院也开始对外招收网络工程专业(大数据方向)。三、民院校人才培养方案的制订西安欧亚学院作为一所民三本院校,本着创新型教育理念,一直致力于应用型人才的培养。从2012年开始筹备至今年正式招生,共两年时间。无论从企业需求,还是学术要求,我们都进行了充分的调研及论证。1.前期准备(1)资料准备在与北京大学教授合作的项目中,受到启发。继而开始搜集大数据方面的各种文献资料,对目前国内各大高校的专业开设情况进行考察,借鉴他人的宝贵经验。最终形成了一个初步的课程规划清单。(2)企业调研根据以往的教学经验,我们知道,学生将来是否能顺利的找到工作,与其在学校接受的教育是息息相关的。很多时候,我们只是从一个教师的角度考虑,应该培养出什么样的学生。可是,我们并不了解,目前,就某一个行业领域,企业需要什么样的人才,无论从专业能力方面,还是从个人基本素质方面。鉴于此,我们对一些相关企业做了调查问卷,结果得出,企业需要的大数据人才,从个人素质方面,需要以下能力:良好的数据敏感度,能从海量数据提炼核心结果。对统计、数学建模有强烈的兴趣和钻研精神。良好的学习能力、团队协作能力、逻辑思维能力、分析能力。擅长与商业伙伴的交流沟通,具有优秀的报告讲解能力及沟通能力。工作高效,有条理,细致,态度积极,责任心强,能够承受较强工作压力。在专业技能方面,需要以下能力:熟悉数理统计、数据分析、数据挖掘等基础知识,熟知常用算法。熟练使用SAS、SPSS、R、Excel等统计分析软件。精通至少一门编程语言(C、Java、Python、shell)。了解数据结构和算法设计。熟悉Linux操作系统开发环境。(3)师资培养学生所学知识的源头均来自于老师。我校教师大多从学校毕业后直接任教,缺乏实际工作经验。虽然基本的理论知识都能掌握,但应用于实践的能力缺乏。为此,我们将教师分批派往不同合作公司进行挂职锻炼,为期一个月至半年不等。这样,教师不但能充分发挥自己的业务专长,将理论联系于实际;同时,在企业中,能经历到不一样的工作状态和企业氛围。将来回归课堂,能给学生传递的不仅仅是科学知识,更重要的是书中没有的工作经验和阅历。另外,在大数据方面,有很多不同方向的讲座、论坛、会议。其间,各领域的业内高手都会云集,畅谈自己的编程经验或心得体会。我们会及时派出相关老师外出参会,听取高手经验、开拓视野的同时,更希望能和高手有交流甚至合作的机会。(4)专家论证经过我们的调查问卷和深入企业实习的见闻体会,我们更加明确了大数据人才培养的方向,进一步完善了培养计划。为了更有力的支持我们的方案,专业开发团队先后多次请来名校教授进行座谈论证,经过5次不断的“推翻―重做―修改”,最终形成2014级学生的人才培养方案。2.方案阐述我校在网络工程专业开设了一个大数据方向的实验班,本科四年制,培养阶段划分为通识教育、专业培养和多元化培养三个培养阶段。第一阶段:通识教育培养阶段。按照工程人才培养的共性要求而设置,并为全面素质教育奠定基础。包括综合基础和基本技能两个模块。在综合基础模块中,设置了由“政治思想理论课、高等数学、大学物理、体育”等系列课程构成的必修课程,和由人文科学与艺术、社会科学、自然科学等系列课程构成的选修课程。重点满足对学生逻辑思维、思想品德、身心健康、人文科学与艺术、社会活动能力等各方面素质培养的要求。在基本技能模块中,主要设置有计算机类、英语类和人文类等课程。重点培养学生具有较强的计算机应用能力、良好的中外文沟通、表达与写作能力,基本工程与科研素养以及良好的国际视野和国际竞争能力。第二阶段:专业培养阶段。培养大数据分析人才必备基础理论知识和技术能力。包括专业基础能力和学历提升两个模块。学历提升模块开设计算机类考研必备的高等数学、英语、计算机网络、数据库基础、数据挖掘等基础性课程,使学生掌握扎实的学科基础理论;专业基础模块开设统计学基础、多元统计分析、时间序列分析、Hadoop并行计算、数据可视化技术和分布式云计算等专业技术基础课程,让学生掌握大数据在数据管理、系统开发、数据分析与数据挖掘等方面的核心技能,培养工程人才在计算机学科网络大数据专业领域中必要的、最基础的知识和能力。第三阶段:多元化培养阶段。通过设计多元化课程体系,为学生提供自主选择专业方向的机会,使学生个性培养得以实现。大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。四、结束语目前,数据分析是一个朝阳行业,而高校大数据人才培养更是一个新兴的领域,在很多公高校都没有做好准备的情况下,作为民的三本院校,我们踉跄起步,希望在未来的发展中,能总结出的经验,不断完善自己,更希望能给于兄弟院校一个参考的思路,我们共同完善大数据人才的培养工程。本回答被网友采纳