欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

企业在利用大数据分析进行市场调研时最重要的是什么?

千晶
武士刀
为企业营销决策提供依据,发现市场机遇

大数据分析是什么?优缺点是什么?大数据的优缺点

彼圣人者
义存
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。大数据分析的优点:能够准备得出可靠信息,有助于企业发展,已经找到自己的方向;缺点:信息透明化,大数据比你更了解你自己。大数据优点:(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。(3)分析所有SKU,以利润最大化为目标来定价和清理库存。 (4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。(5)从大量客户中快速识别出金牌客户。 (6)使用点击流分析和数据挖掘来规避欺诈行为。大数据的缺陷:当前,大部分中国企业在数据基础系统架构和数据分析方面都面临着诸多挑战。根据产业信息网调查,目前国内大部分企业的系统架构在应对大量数据时均有扩展性差、资源利用率低、应用部署复杂、运营成本高和高能耗等缺陷。

如何看待大数据背景下的市场调研?

布兰琪
任红
大数据时代做市场调查最重要的是能采集到一手的海量数据,还必须非常精准的数据,高质量的数据,八爪鱼采集器可以帮你做采集。然后就是大数据分析,这个一般要数学建模。

大数据分析的分析步骤

黑魔岛
彼兀者也
大数据分析的五个基本方面1. Analytic Visualizations(可视化分析)  不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 2. Data Mining Algorithms(数据挖掘算法)  可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。 3. Predictive Analytic Capabilities(预测性分析能力)  数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。 4. Semantic Engines(语义引擎)  我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。 5. Data Quality and Master Data Management(数据质量和数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。 假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。

大数据分析方法有哪些,大数据分析方法介绍

目彻为明
高拱
去百度文库,查看完整内容>内容来自用户:蒋上树常用数据分析方法有那些文章来源:ECP数据分析时间:2013/6/28 13:35:06发布者:常用数据分析(关注:554)标签:本文包括:常用数据分析方法:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析;问卷调查常用数据分析方法:描述性统计分析、探索性因素分析、Cronbach’a信度系数分析、结构方程模型分析(structural equations modeling)。数据分析常用的图表方法:柏拉图(排列图)、直方图(Histogram)、散点图(scatter diagram)、鱼骨图(Ishikawa)、FMEA、点图、柱状图、雷达图、趋势图。数据分析统计工具:SPSS、minitab、JMP。常用数据分析方法:1、聚类分析(Cluster Analysis)聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。2、因子分析(Factor Analysis)因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。相关分析(直方图JMP

大数据分析中,有哪些常见的大数据分析模型

吕才
鬼朋友
数据分析模型主要是用来指导数据分析师进行一个完整的数据分析,是指导数据分析的思路。数据分析常用的模型有:留存分析模型:用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为;全行为路径分析:根据每位用户在APP或网站中的行为事件,分析用户在APP或网站中各个模块的流转规律与特点,挖掘用户的访问或浏览模式,进而实现一些特定的业务用途;漏斗分析模型:能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型;热图分析模型:其实就是指页面点击分析;事件分析模型:是针对用户行为的分析模型之一,也是用户行为数据分析的核心和基础;用户分群模型:对用户进行精细化运营,用户分群能帮助企业更加了解用户,分析用户的属性特征、以及用户的行为特征;用户分析模型:通过查看用户数量在注册时间上的变化趋势、查看用户按省份的分布情况等等,丰富用户画像维度;黏性分析模型:在留存分析的基础上,对一些用户指标进行深化;

做问卷调研可以用大数据来处理吗?

短后之衣
法显
对比分析法、平均和变异分析法、综合评价分析法、结构分析法、平衡分析法、动态分析法、因素分析法、相关分析法 层次分析法 结构分析方程模型 参数检验、非参数检验、相关分析、回归分析、聚类分析、判别分析 、主成份分析(归一化 除以各自标准差)、因子分析、关联分析、决策树分析、贝叶斯、时间序列。

大数据分析或终结传统数据统计方式

白巨熊
少林寺
大数据分析或终结传统数据统计方式这便是大数据分析存在的理由,其是前所未有的。不仅仅是大数据概念的本身提醒着我们,至少我们还可以追溯到21世纪初,“彼时,存储和CPU技术正被百万兆字节的数据所淹没,IT面临着数据的可扩展性危机。”针对大规模和不同的数据集的应用程序中先进的分析技术是前所未有的(如数据挖掘)。这便是大数据分析的出现所带来的划时代的意义了。卢瑟姆说,这是数据可扩展性危机结束的信号。 这给企业带来了前所未有的意义。针对企业所收集的数据进行数据挖掘、数据分析,并在某些情况下作出相关的报告。这就是为什么诸如数据抽样这样的实践方案被视为企业相当务实的必需品。 “你不能把整个数据集都放入到数据挖掘计划中。你必须选择你所需要的数据,必须确保数据的正确性,因为如果你没有投入正确的数据,你的技术可能不奏效。”数据仓库研究院研究员马克?马德森在预测分析研讨会上告诉与会者。 “你可以将您所收集到的数据中的一个很小的比例投入挖掘…概率事件的采样。”他继续说,“但分解会非常罕见,成为非常罕见的事件,使其很难变成样本。” 理想情况下,你要找出所有这些“罕见”事件,他们属于异常现象,如欺诈行为、客户流失和潜在的供应链中断。他们是隐藏在你未分化的数据中的高价值的东西,很难找到。 这些供应商不只是谈论大数据,他们正在谈论大数据结合先进的分析技术,如数据挖掘,统计分析和预测分析。换句话说,他们正在谈论的是大数据分析。 根据数据仓库研究院的研究显示,大数据分析还没有到来;尚未被主流所接受。在数据仓库研究院最近的调查中,超过三分之一(34%)的受访者表示,他们所在的企业结合大数据,实行了某种形式的先进的分析。在大多数情况下,他们仅仅采用非常简便的方法。例如,数据抽样。 “如果你继续采用数据抽样的方法,你可以实际处理所有数据,但数据的科学性本质上是削弱的。”他说。“在Hadoop的世界,没有任何理由不采用商品硬件、真正的智能软件。在过去,我们采用抽样数据,可能还有经济成本方面的考量原因,或者技术达不到的原因。但在今天,这些原因都不复存在。数据采样在过去是最好的实践方案,但我认为它的时代已经过去了。” “大海捞针的问题不适合采用样本,所以你这样过分强调训练集,可能会导致问题。”负责信息管理咨询的马德森指出,“最终,运行整个数据集要比紧紧按照统计算法和担心样本更容易。技术可以在出现分配挑战时处理数据的问题,并可以访问统计方法。”

企业想接触大数据分析方面的软件或工具,主要用于市场调研数据的分析

生非汝有
爱会赢
市场调研大数剧据对数据源和分析能力的要求较高,决策狗大数剧在消费品市场的市场数剧分析比较专业,数剧源也是自主采集的。希望可以帮到你!SPSS SAS EVILSE