欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

如何成为一名大数据工程师

翠菊
习动
大数据是眼下非常时髦的技术名词,与此同时自然也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。这群人在国外被叫做数据科学家(Data Scientist),这个头衔最早由D.J.Pati和Jeff Hammerbacher于2008年提出,他们后来分别成为了领英(LinkedIn)和Facebook数据科学团队的负责人。而数据科学家这个职位目前也已经在美国传统的电信、零售、金融、制造、物流、医疗、教育等行业里开始创造价值。不过在国内,大数据的应用才刚刚萌芽,人才市场还不那么成熟,“你很难期望有一个全才来完成整个链条上的所有环节。公司会根据自己已有的资源和短板,招聘能和现有团队互补的人才。”领英(LinkedIn)中国商务分析及战略总监王昱尧对《第一财经周刊》说。数据工程师是做什么的?于是每家公司对大数据工作的要求不尽相同:有的强调数据库编程、有的突出应用数学和统计学知识、有的则要求有咨询公司或投行相关的经验、有些是希望能找到懂得产品和市场的应用型人才。正因为如此,很多公司会针对自己的业务类型和团队分工,给这群与大数据打交道的人一些新的头衔和定义:数据挖掘工程师、大数据专家、数据研究员、用户分析专家等都是经常在国内公司里出现的Title,我们将其统称为“大数据工程师”。由于国内的大数据工作还处在一个有待开发的阶段,因此能从其中挖掘出多少价值完全取决于工程师的个人能力。已经身处这个行业的专家给出了一些人才需求的大体框架,包括要有计算机编码能力、数学及统计学相关背景,当然如果能对一些特定领域或行业有比较深入的了解,对于其快速判断并抓准关键因素则更有帮助。虽然对于一些大公司来说,拥有硕博学历的公司人是比较好的选择,不过阿里巴巴集团研究员薛贵荣强调,学历并不是最主要的因素,能有大规模处理数据的经验并且有喜欢在数据海洋中寻宝的好奇心会更适合这个工作。除此之外,一个优秀的大数据工程师要具备一定的逻辑分析能力,并能迅速定位某个商业问题的关键属性和决定因素。“他得知道什么是相关的,哪个是重要的,使用什么样的数据是最有价值的,如何快速找到每个业务最核心的需求。”联合国百度大数据联合实验室数据科学家沈志勇说。学习能力能帮助大数据工程师快速适应不同的项目,并在短时间内成为这个领域的数据专家;沟通能力则能让他们的工作开展地更顺利,因为大数据工程师的工作主要分为两种方式:由市场部驱动和由数据分析部门驱动,前者需要常常向产品经理了解开发需求,后者则需要找运营部了解数据模型实际转化的情况。你可以将以上这些要求看做是成为大数据工程师的努力方向,因为根据万宝瑞华管理合伙人颜莉萍(Nicole Yan)的观察,这是一个很大的人才缺口。目前国内的大数据应用多集中在互联网领域,有超过56%的企业在筹备发展大数据研究,“未来5年,94%的公司都会需要数据科学家。”颜莉萍(Nicole Yan)说。因此她也建议一些原本从事与数据工作相关的公司人可以考虑转型。用阿里巴巴集团研究员薛贵荣的话来说,大数据工程师就是一群“玩数据”的人,玩出数据的商业价值,让数据变成生产力。大数据和传统数据的最大区别在于,它是在线的、实时的,规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。沈志勇认为如果把大数据想象成一座不停累积的矿山,那么大数据工程师的工作就是,“第一步,定位并抽取信息所在的数据集,相当于探矿和采矿。第二步,把它变成直接可以做判断的信息,相当于冶炼。最后是应用,把数据可视化等。”因此分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。通过这三个工作方向,他们帮助企业做出更好的商业决策。1.找出过去事件的特征大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。比如,腾讯的数据团队正在搭建一个数据仓库,把公司所有网络平台上数量庞大、不规整的数据信息进行梳理,总结出可供查询的特征,来支持公司各类业务对数据的需求,包括广告投放、游戏开发、社交网络等。找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。“你可以知道他是什么样的人、他的年纪、兴趣爱好,是不是互联网付费用户、喜欢玩什么类型的游戏,平常喜欢在网上做什么事情。”腾讯云计算有限公司北京研发中心总经理郑立峰对《第一财经周刊》说。下一步到了业务层面,就可以针对各类人群推荐相关服务,比如手游,或是基于不同特征和需求衍生出新的业务模式,比如微信的电影票业务。2.预测未来可能发生的事情通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。“比如今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。”薛贵荣说。在百度,沈志勇支持“百度预测”部分产品的模型研发,试图用大数据为更广泛的人群服务。已经上线的包括世界杯预测、高考预测、景点预测等。以百度景点预测为例,大数据工程师需要收集所有可能影响一段时间内景点人流量的关键因素进行预测,并为全国各个景点未来的拥挤度分级—在接下来的若干天时间里,它究竟是畅通、拥挤,还是一般拥挤?3.找出最优化的结果根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。以腾讯来说,郑立峰认为能反映大数据工程师工作的最简单直接的例子就是选项测试(AB Test),即帮助产品经理在A、B两个备选方案中做出选择。在过去,决策者只能依据经验进行判断,但如今大数据工程师可以通过大范围地实时测试—比如,在社交网络产品的例子中,让一半用户看到A界面,另一半使用B界面,观察统计一段时间内的点击率和转化率,以此帮助市场部做出最终选择。作为电商的阿里巴巴,则希望通过大数据锁定精准的人群,帮助卖家做更好的营销。“我们更期待的是你能找到这样一批人,比起现有的用户,这些人对产品更感兴趣。”薛贵荣说。一个淘宝的实例是,某人参卖家原来推广的目标人群是产妇,但工程师通过挖掘数据之间的关联性后发现,针对孕妇群体投放的营销转化率更高。需要具备的能力1.数学及统计学相关的背景就我们采访过的BAT三家互联网大公司来说,对于大数据工程师的要求都是希望是统计学和数学背景的硕士或博士学历。沈志勇认为,缺乏理论背景的数据工作者,更容易进入一个技能上的危险区域(Danger Zone)—一堆数字,按照不同的数据模型和算法总能捯饬出一些结果来,但如果你不知道那代表什么,就并不是真正有意义的结果,并且那样的结果还容易误导你。“只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。”沈志勇说。2.计算机编码能力实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素。“因为许多数据的价值来自于挖掘的过程,你必须亲自动手才能发现金子的价值。”郑立峰说。举例来说,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的文字、语音、图像甚至视频中攫取有意义的信息就需要大数据工程师亲自挖掘。即使在某些团队中,大数据工程师的职责以商业分析为主,但也要熟悉计算机处理大数据的方式。3.对特定应用领域或行业的知识在颜莉萍(Nicole Yan)看来,大数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。所以,在某个或多个垂直行业的经历能为应聘者积累对行业的认知,对于之后成为大数据工程师有很大帮助,因此这也是应聘这个岗位时较有说服力的加分项。“他不能只是懂得数据,还要有商业头脑,不论对零售、医药、游戏还是旅游等行业,能就其中某些领域有一定的理解,最好还是与公司的业务方向一致的,”就此薛贵荣还打了个比方,“过去我们说一些奢侈品店员势利,看人一眼就知道买得起买不起,但这群人恰恰是有敏锐度的,我们认为他们是这个行业的专家。又比如对医疗行业了解的人,他在考虑医疗保险业务时,不仅会和人们医院看病的记录相关,也会考虑饮食数据,这些都是基于对该领域的了解。”职业发展1.如何成为大数据工程师由于目前大数据人才匮乏,对于公司来说,很难招聘到合适的人才—既要有高学历,同时最好还有大规模数据处理经验。因此很多企业会通过内部挖掘。2014年8月,阿里巴巴举办了一个大数据竞赛,把天猫平台上的数据拿出来,去除敏感问题后,放到云计算平台上交予7000多支队伍进行比赛,比赛分为内部赛和外部赛。“通过这个方式来激励内部员工,同时也发现外部人才,让各行业的大数据工程师涌现出来。”颜莉萍(Nicole Yan)建议,目前长期从事数据库管理、挖掘、编程工作的人,包括传统的量化分析师、Hadoop方面的工程师,以及任何在工作中需要通过数据来进行判断决策的管理者,比如某些领域的运营经理等,都可以尝试该职位,而各个领域的达人只要学会运用数据,也可以成为大数据工程师。2.薪酬待遇作为IT类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的顶级。根据颜莉萍(Nicole Yan)的观察,国内IT、通讯、行业招聘中,有10%都是和大数据相关的,且比例还在上升。颜莉萍(Nicole Yan)表示,“大数据时代的到来很突然,在国内发展势头激进,而人才却非常有限,现在完全是供不应求的状况。”在美国,大数据工程师平均每年薪酬高达17.5万美元,而据了解,在国内顶尖互联网类公司,同一个级别大数据工程师的薪酬可能要比其他职位高20%至30%,且颇受企业重视。3.职业发展路径由于大数据人才数量较少,因此大多数公司的数据部门一般都是扁平化的层级模式,大致分为数据分析师、资深研究员、部门总监3个级别。大公司可能按照应用领域的维度来划分不同团队,而在小公司则需要身兼数职。有些特别强调大数据战略的互联网公司则会另设最高职位—如阿里巴巴的首席数据官。“这个职位的大部分人会往研究方向发展,成为重要数据战略人才。”颜莉萍(Nicole Yan)说。另一方面,大数据工程师对商业和产品的理解,并不亚于业务部门员工,因此也可转向产品部或市场部,乃至上升为公司的高级管理层。

双985计算机硕士,大数据方向,起薪大概多少

大急救
无情
1万起步。

大数据的国内外研究现状及发展动态分析

穷通
笛吹川
去百度文库,查看完整内容>内容来自用户:菊香秋大数据的国内外研究现状及发展动态分析大数据的概念产生的背景与意义上世纪60年代到80年代早期,企业在大型机上部署财务、银行等关键应用系统,存储介质包括磁盘、磁带、光盘等。尽管当时人们称其为大数据,但以今日的数据量来看,这些数据无疑是非常有限的。随着PC的出现和应用增多,企业内部出现了很多以公文档为主要形式的数据,包括Word、Excel文档,以及后来出现的图片、图像、影像和音频等。此时企业内部生产数据的已不仅是企业的财务人员,还包括大量的办公人员,这极大地促进了数据量的增长。互联网的兴起则促成了数据量的第三次大规模增长,在互联网的时代,几乎全民都在制造数据。而与此同时,数据的形式也极其丰富,既有社交网络、多媒体等应用所主动产生的数据,也有搜索引擎、网页浏览等被动行为过程中被记录、搜集的数据。时至今日,随着移动互联网、物联网、云计算应用的进一步丰富,数据已呈指数级的增长,企业所处理的数据已经达到PB级,而全球每年所产生的数据量更是到了惊人的ZB级。在数据的这种爆炸式增长的背景下,“大数据”的概念逐渐在科技界、学术界、产业界引起热议。在大数据时代,我们分析的数据因为“大”,摆脱了传统对随机采样的依赖,而是面对全体数据;因为所有信息都是“数”,可以不再纠结具体数据的精确度,而是坦然面对信息的混杂;信息之“大”之“杂”,让我们分析的“据”也由传统的因果关系变为相关关系。国内外研究进展国外除在大数据的

和大数据有关的毕业论文题目

恩仇劫
迪斯科
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

大数据属于什么专业?

火要镇
梦幻曲
我猜,题主想要问的是:最近几年大火的大数据,如果是想要在大学里学习相关专业,将来从事相关工作,具体有哪些专业是属于对口的吧?就从这个角度来说一说。一般来说,学校的人才培养和专业设置,相对于市场上相关人才的热门需求是要相对滞后的,比如说国际贸易、物流管理、电子商务这些专业,都是在相关行业蓬勃发展一段时间之后,各高校才逐步设立了相关专业。大数据、人工智能相关领域,也不例外。因此,目前国内高校里开设了诸如数据科学与大数据技术、大数据采集与管理这样专业的学校还不算特别多,根据教育部2018年公布的较早通过相关专业备案和审批的高校有中国人民大学、中国农业大学、北京师范大学、中国传媒大学、南开大学、同济大学等,若有兴趣可进一步了解。同时,目前企业里招聘相关领域的人才,一般会从联系比较密切的专业里来寻找对口人才,比如统计学、数学、软件工程、计算机科学等专业。如果想报考的学校暂时没有数据科学与大数据技术相关专业,则可以通过学习临近专业来达到将来从事相关领域工作的目标。再来说说它有什么优势。一个热门的专业和领域,自然是它代表了未来的某种趋势,就像从好多年前就开始热门的计算机技术相关专业,在互联网、移动互联网快速发展的这些年,市场上对相关人才的需求也大幅度增加,学习热门专业自然就能够更快地找到合适的工作,还能在热门行业和热门岗位上,拿到更高的工资。这个专业和领域的另外一个优势还在于,它学习和入门的门槛比较高,也就是说,一个人通过本科4年、再加上硕士研究生、博士研究生的系统学习后,基本上就会构建自己专业领域上一定的壁垒,形成自己极具竞争力的专业优势,这样一来,起点高、又有较高的壁垒,在今后的职业道路上也就会有更好更快的发展。

哪些大学开设了大数据专业,并且已经有了应届毕业生

书云
井边会
国论文网http://www.xzbu.com/1/view-7050455.htm关键词:民院校;大数据;人才培养一、大数据技术概述最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。二、国内外研究现状国外除了在大数据的概念上的研究外,重点放在技术研究。美国政府六个部门启动的大数据研究计划中,绝大多数研究项目都是应对大数据带来的技术挑战,重视的是数据工程而不是数据科学,主要考虑大数据分析算法和系统的效率。国内在大数据研究领域的重点在大数据与云计算、数据挖掘,并行计算和分布式处理,应用式主要集中在地理信息系统。但目前国内高校很少有开设大数据方向的相关专业,业内先驱当属北航软件学院大数据技术与应用专业。此专业是北航软件学院、北航计算机学院与慧科教育(工信部移动云计算教育培训中心)联合打造的大数据技术与应用专业,于2012年开始招收工程硕士。另外,2013年,华东师范大学成立了数据科学与工程研究院;2014年,华南理工大学设立了云计算与大数据专业;同年,清华大学成立“清华―青岛数据科学研究院”,设立大数据的硕士博士学位项目。另外,开设大数据相关本科专业的院校有贵州师范学院、贵州大学和北京城市学院。而2014年9月开始,西安欧亚学院也开始对外招收网络工程专业(大数据方向)。三、民院校人才培养方案的制订西安欧亚学院作为一所民三本院校,本着创新型教育理念,一直致力于应用型人才的培养。从2012年开始筹备至今年正式招生,共两年时间。无论从企业需求,还是学术要求,我们都进行了充分的调研及论证。1.前期准备(1)资料准备在与北京大学教授合作的项目中,受到启发。继而开始搜集大数据方面的各种文献资料,对目前国内各大高校的专业开设情况进行考察,借鉴他人的宝贵经验。最终形成了一个初步的课程规划清单。(2)企业调研根据以往的教学经验,我们知道,学生将来是否能顺利的找到工作,与其在学校接受的教育是息息相关的。很多时候,我们只是从一个教师的角度考虑,应该培养出什么样的学生。可是,我们并不了解,目前,就某一个行业领域,企业需要什么样的人才,无论从专业能力方面,还是从个人基本素质方面。鉴于此,我们对一些相关企业做了调查问卷,结果得出,企业需要的大数据人才,从个人素质方面,需要以下能力:良好的数据敏感度,能从海量数据提炼核心结果。对统计、数学建模有强烈的兴趣和钻研精神。良好的学习能力、团队协作能力、逻辑思维能力、分析能力。擅长与商业伙伴的交流沟通,具有优秀的报告讲解能力及沟通能力。工作高效,有条理,细致,态度积极,责任心强,能够承受较强工作压力。在专业技能方面,需要以下能力:熟悉数理统计、数据分析、数据挖掘等基础知识,熟知常用算法。熟练使用SAS、SPSS、R、Excel等统计分析软件。精通至少一门编程语言(C、Java、Python、shell)。了解数据结构和算法设计。熟悉Linux操作系统开发环境。(3)师资培养学生所学知识的源头均来自于老师。我校教师大多从学校毕业后直接任教,缺乏实际工作经验。虽然基本的理论知识都能掌握,但应用于实践的能力缺乏。为此,我们将教师分批派往不同合作公司进行挂职锻炼,为期一个月至半年不等。这样,教师不但能充分发挥自己的业务专长,将理论联系于实际;同时,在企业中,能经历到不一样的工作状态和企业氛围。将来回归课堂,能给学生传递的不仅仅是科学知识,更重要的是书中没有的工作经验和阅历。另外,在大数据方面,有很多不同方向的讲座、论坛、会议。其间,各领域的业内高手都会云集,畅谈自己的编程经验或心得体会。我们会及时派出相关老师外出参会,听取高手经验、开拓视野的同时,更希望能和高手有交流甚至合作的机会。(4)专家论证经过我们的调查问卷和深入企业实习的见闻体会,我们更加明确了大数据人才培养的方向,进一步完善了培养计划。为了更有力的支持我们的方案,专业开发团队先后多次请来名校教授进行座谈论证,经过5次不断的“推翻―重做―修改”,最终形成2014级学生的人才培养方案。2.方案阐述我校在网络工程专业开设了一个大数据方向的实验班,本科四年制,培养阶段划分为通识教育、专业培养和多元化培养三个培养阶段。第一阶段:通识教育培养阶段。按照工程人才培养的共性要求而设置,并为全面素质教育奠定基础。包括综合基础和基本技能两个模块。在综合基础模块中,设置了由“政治思想理论课、高等数学、大学物理、体育”等系列课程构成的必修课程,和由人文科学与艺术、社会科学、自然科学等系列课程构成的选修课程。重点满足对学生逻辑思维、思想品德、身心健康、人文科学与艺术、社会活动能力等各方面素质培养的要求。在基本技能模块中,主要设置有计算机类、英语类和人文类等课程。重点培养学生具有较强的计算机应用能力、良好的中外文沟通、表达与写作能力,基本工程与科研素养以及良好的国际视野和国际竞争能力。第二阶段:专业培养阶段。培养大数据分析人才必备基础理论知识和技术能力。包括专业基础能力和学历提升两个模块。学历提升模块开设计算机类考研必备的高等数学、英语、计算机网络、数据库基础、数据挖掘等基础性课程,使学生掌握扎实的学科基础理论;专业基础模块开设统计学基础、多元统计分析、时间序列分析、Hadoop并行计算、数据可视化技术和分布式云计算等专业技术基础课程,让学生掌握大数据在数据管理、系统开发、数据分析与数据挖掘等方面的核心技能,培养工程人才在计算机学科网络大数据专业领域中必要的、最基础的知识和能力。第三阶段:多元化培养阶段。通过设计多元化课程体系,为学生提供自主选择专业方向的机会,使学生个性培养得以实现。大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。四、结束语目前,数据分析是一个朝阳行业,而高校大数据人才培养更是一个新兴的领域,在很多公高校都没有做好准备的情况下,作为民的三本院校,我们踉跄起步,希望在未来的发展中,能总结出的经验,不断完善自己,更希望能给于兄弟院校一个参考的思路,我们共同完善大数据人才的培养工程。本回答被网友采纳

大数据需要什么样的人才?

暗恋
朗读者
  大数据需要以下六类人才:  一、大数据系统研发工程师。  这一专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等,同时,还要负责数据集群的日常运作和系统的监测等,这一类人才是任何构设大数据系统的机构都必须的。  二、大数据应用开发工程师。  此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapRece,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。  三、大数据分析师。  此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是最抢手的大数据人才,他们所从事的是热门的分析师工作。  四、数据可视化工程师。  此类人才负责在收集到的高质量数据中,利用图形化的工具及手段的应用,清楚地揭示数据中的复杂信息,帮助用户更好地进行大数据应用开发,如果能使用新型数据可视化工具如Spotifre,Qlikview和Tableau,那么,就成为很受欢迎的人才。  五、数据安全研发人才。  此类人才主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施,而对于数据安全方面的具体技术的人才就更需要了,如果数据安全技术,同时又具有较强的管理经验,能有效地保证大数据构设和应用单位的数据安全,那就是抢手的人才。  六、数据科学研究人才。  数据科学研究是一个全新的工作,够将单位、企业的数据和技术转化为有用的商业价值,随着大数据时代的到来,越来越多的工作、事务直接涉及或针对数据,这就需要有数据科学方面的研究专家来进行研究,通过研究,他们能将数据分析结果解释给IT部门和业务部门管理者听,数据科学专家是联通海量数据和管理者之间的桥梁,需要有数据专业、分析师能力和管理者的知识,这也是抢手的人才。

目前国内有开设大数据研究生的高校了吗?

是谓能移
必不合矣
去年北航软件学院就开设了全国首个大数据硕士专业你可以去问一下,是妹子吗,我也打算报一个。我朋友学校里面她从一个宣讲会得知北航软件学院南通孵化基地(相当于分校区吧)有一个免费读研究生的项目,里面就有这个大数据专业,师资和实验室配备据说和北航软件学院本部是一样的,南通政府为了吸引这方面的人才来读,实行学费资助计划,最后南通政府还推荐工作,着实不错,你是打算2015年读研么,貌似是最后一年了。要去一起吧!

中国有哪些大学招收大数据,数据分析专业的研究生

妙米
目前大学还没有开始大数据和数据分析专业的课程,一些基础的东西还是有的,不过属于计算机专业里面的分支。专业的大数据和数据分析还是的去培训的。不过以后大学会慢慢开设大数据的课程的吧。柠檬学院大数据。