欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

目前国内丙烯供需现状

牙牙学语
其食不甘
  参考《2016-2021年中国丙烯行业市场前瞻与投资战略规划分析报告》可知,随着丙烯下游衍生物的快速发展,国内丙烯消费量增幅较大,从2008年的1165.7万t增加到2013年的1948.6万t,2008-2013年年均需求增长率为10.8%,而产量的年均增长为9.4%。  由于国内丙烯生产企业基本上都建有下游配套生产装置,尤其是中石油和中石化两大集团,进入市场的商品量很少,所以每年需从国外进口大量的丙烯。2008年国内丙烯进口量91.7万t,2013年增长到264.1万t,出口量一直为零,供需缺口不断增大。2013年进口量占国内表观消费量的14%。  我国丙烯进口主要来自韩国、中国台湾和日本。这三个地区进口量之和占国内总进口量的95%左右。华东地区,江苏和浙江是主要的丙烯进口地区,这两个地区占总进口量的77.5%,此外天津、上海和山东也有少量进口。  2013年国内丙烯表观消费量约1948.6万t。国内丙烯消费量主要用于聚丙烯、丙烯腈、丙烯酸、环氧丙烷、丁辛醇和苯酚丙酮等的生产。聚丙烯是丙烯最大的下游衍生物,占丙烯消费量的63.6%;其次是环氧丙烷,约占消费总量的7.7%;丁辛醇占7.6%,丙烯腈占6.4%,丙烯酸占5.9%,苯酚丙酮占3.5%,其他领域占5.4%。  可以看出,在今后几年内,国内丙烯仍将处于供不应求的局面,市场缺口虽有所减小,但依然存在。未来几年,虽然国内规划有多套丙烷脱氢装置建设,但根据目前各家企业的生产状况来看,各套装置均有完善的下游配套设施,而煤制烯烃项目也基本完全配套,因此进入市场的丙烯商品量仍然不多。

丙酮酸的生产情况

非言非默
哭泣无涕
国际上发酵法生产丙酮酸的研究始于1950年。与化学合成法相比,发酵法具有原料成本低、来源广、产物纯度高、反应条件温和等许多优点,是极具市场竞争力、发展前景良好的工艺路线。虽然有关发酵法生产丙酮酸的研究至今已有40余年,但工业化历史尚未超过10年。发酵法生产丙酮酸工业化的实现,是日本生物技术进步的又一个实例。尽管日本科学家在丙酮酸高产菌的筛选和发酵条件上做了大量卓有成效的工作,但很少有从生化工程角度出发优化丙酮酸的发酵生产过程的报道,而后者又是保证优良菌种生产潜力得以最大发挥的必要条件。我国应当大力开发自己的丙酮酸发酵生产技术,尽快实现发酵法生产丙酮酸的产业化。中国江南大学生物工程学院承担了江苏省“九五”工业重大科技攻关项目“发酵法生产丙酮酸中试”对葡萄糖发酵法进行研究,其产酸率达到7.7%,葡萄糖转化率约70%,已经达到国外先进水平 。并且在综合国内外丙酮酸提取研究的基础上,自主开发了萃取法提取发酵液中丙酮酸的技术专利。当前此法尚未实现工业化,但它具有污染少、产品质量高等优点,是一条极具发展前景的工艺路线。国内丙酮酸及其盐、酯的主要生产厂家有近10家企业,年生产能力只有约1000t,而且大部分企业采用落后的酒石酸合成技术,环境污染比较严重,生产成本高,面临淘汰的危险。在采用发酵法生产丙酮酸方面,目前我国只有江苏常州常茂生物化工有限公司采用中试设备在进行少量生产,没有形成发酵法生产丙酮酸的工业化。由于发酵法生产丙酮酸的生产工艺与其他有机酸和氨基酸类似,因此,有机酸和氦基酸厂对设备进行适当改造即可投入生产,设备投资很小。按丙酮酸产量5%、糖酸转化率40%、提取总收率80%进行经济核算,每吨丙酮酸的生产成本(原料、水、电、汽、人工)为4.5万~5.5万元。一个年产250t的丙酮酸发酵车间,每年销售收入可达2500万元,经济效益非常显著。此外,若我国发酵法生产丙酮酸可满足国内市场需要,还能同时为国家节约大量外汇,具有明显的社会效益。

丙酮是什么?

大瑟尔
猛犸象
丙酮:也称作二甲基酮,分子式为CH3COCH3,是一种无色透明液体,有特殊的辛辣气味。是饱和脂肪酮系列中最简单的酮.能溶于水、乙醇、乙醚及其他有机溶剂中.工业上主要作为溶剂用于塑料、橡胶、纤维、制革、油脂、喷漆等行业中,也可作为合成烯酮、醋酐、碘仿、聚异戊二烯橡胶、甲基丙烯酸、甲酯、氯仿、环氧树脂等物质的重要原料.在精密铜管制造行业中,丙酮经常被用于擦拭铜管上面的黑色墨水.也常常被不法分子做毒品的原料溴代苯丙酮。丙酮是重要的有机合成原料,用于生产环氧树脂,聚碳酸酯,有机玻璃,医药,农药等。亦是良好溶剂,用于涂料、黏结剂、钢瓶乙炔等。也用作稀释剂,清洗剂,萃取剂。还是制造醋酐、双丙酮醇、氯仿、碘仿、环氧树脂、聚异戊二烯橡胶、甲基丙烯酸甲酯等的重要原料。在无烟火药、赛璐珞、醋酸纤维、喷漆等工业中用作溶剂。在油脂等工业中用作提取剂。

谁能分别提供一下:工业酒精、黄油、46#抗磨液压油、导热油、滑道油、切削油、丙酮、的SGS检测报告?急!

对不起
对物
请来电详细姿寻:010-89353050

丙酮在商店里叫什么的?

形形色色
整日整夜
天拿水不是丙酮,丙酮属于公安管制化学制剂,普通的五金商店不可能有卖的,只有专门的化学试剂门市部才有,你要了解丙酮就看下面的参考资料吧!参考资料:http://ke..com/view/52518.html?wtp=tt

气相色谱的基本操作和丙酮保留时间的测定实验报告

若丧其一
万世之后
保留时间跟柱温 载气流速 色谱柱 有直接关系没法给你明确时间

青高素研究报告怎么写

绿行星
伦理
  青蒿素,化学式C15H22O5,分子量282.33,无色针状晶体,味苦。 在丙酮、醋酸乙酯、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇、乙醚及石油醚中可溶解,在水中几乎不溶。 熔点156-157℃。  青蒿素是从植物黄花蒿叶中提取的有过氧基团的倍半萜内酯药物。其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体,内质网,此外对核内染色质也有一定的影响。提示青蒿素的作用方式主要是干扰表膜-线粒体的功能。可能是青蒿素酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡。体外培养的恶性疟原虫对氚标记的异亮氨酸的摄入情况也显示其起始作用方式可能是抑制原虫蛋白合成。  以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法。世卫组织认为,青蒿素联合疗法是目前治疗疟疾最有效的手段,也是抵抗疟疾耐药性效果最好的药物,中国作为抗疟药物青蒿素的发现方及最大生产方,在全球抗击疟疾进程中发挥了重要作用。  尤其在疟疾重灾区非洲,青蒿素已经拯救了上百万生命。根据世卫组织的统计数据,自2000年起,撒哈拉以南非洲地区约2.4亿人口受益于青蒿素联合疗法,约150万人因该疗法避免了疟疾导致的死亡。  前瞻产业研究院青蒿素行业分析报告,主要研究行业市场经济特性(产能、产量、供需),投资分析(市场现状、市场结构、市场特点等以及区域市场分析)、竞争分析(行业集中度、竞争格局、竞争对手、竞争因素等)、产业链分析、替代品和互补品分析、行业的主导驱动因素、政策环境。你可以参考一下,或许有用。  第一章 青蒿素概述  第一节 青蒿素定义  第二节 青蒿素行业发展历程  第三节 青蒿素分类情况  第四节 青蒿素产业链分析  一、产业链模型介绍  二、青蒿素产业链模型分析  第二章 青蒿素发展环境及政策分析  第一节 中国经济发展环境分析  一、中国宏观经济发展现状  二、中国宏观经济走势分析  三、中国宏观经济趋势预测  第二节 行业相关政策、法规、标准  第三章 中国青蒿素生产现状分析  第一节 青蒿素行业总体规模  第二节 青蒿素产能概况  一、2015年产能分析  二、2015-2020年产能预测  第三节 青蒿素产量概况  一、2015年产量分析  二、产能配置与产能利用率调查  三、2015-2020年产量预测  第四节 青蒿素产业的生命周期分析  第五节 青蒿素产业供需情况  第四章 青蒿素国内产品价格走势及影响因素分析  第一节 国内产品2013-2015年价格回顾  第二节 国内产品当前市场价格及评述  第三节 国内产品价格影响因素分析  第四节 2015-2020年国内产品未来价格走势预测  第五章 2015年中国青蒿素行业总体发展状况  第一节 中国青蒿素行业规模情况分析  一、行业单位规模情况分析  二、行业人员规模状况分析  三、行业资产规模状况分析  四、行业市场规模状况分析  五、行业敏感性分析  第二节 中国青蒿素行业产销情况分析  一、行业生产情况分析  二、行业销售情况分析  三、行业产销情况分析  第三节 中国青蒿素行业财务能力分析  一、行业盈利能力分析与预测  二、行业偿债能力分析与预测  三、行业营运能力分析与预测  四、行业发展能力分析与预测  第六章 2013-2015年中国青蒿素行业发展概况  第一节 2013-2015年中国青蒿素行业发展态势分析  第二节 2013-2015年中国青蒿素行业发展特点分析  第三节 2013-2015年中国青蒿素行业市场供需分析  第七章 青蒿素行业市场竞争策略分析  第一节 行业竞争结构分析  一、现有企业间竞争  二、潜在进入者分析  三、替代品威胁分析  四、供应商议价能力  五、客户议价能力  第二节 青蒿素市场竞争策略分析  一、青蒿素市场增长潜力分析  二、青蒿素产品竞争策略分析  三、典型企业产品竞争策略分析  第三节 青蒿素企业竞争策略分析  一、2015-2020年我国青蒿素市场竞争趋势  二、2015-2020年青蒿素行业竞争格局展望  三、2015-2020年青蒿素行业竞争策略分析 ………… 略

为什么丙酮能将色素从干燥的红辣椒中提取

无影无踪
访问者
辣椒色素提取精制工艺概述 :天然植物色素作为着色剂的重要组成部分,广泛应用于食品加工、医药和化妆品等与人体健康紧密相关的行业。天然植物色素与人工合成色素相比,原料来源充足,对人体无毒副作用,并且天然色素大多具有一定的生理功能,如天然β-胡萝卜素在防癌、抗癌和预防心血管疾病等方面有明显作用。随着生物技术的发展,天然植物色素的研究与开发日益受到人们的重视,其应用有着广泛的发展前景。辣椒色素是天然色素研究的热点之一,是含有多种色素成分的混合色素,包括辣椒红素(Capsanthin)、辣椒玉红素(Capsorubiu)、隐黄素(Crgtoxabthin)等红色系色素和紫黄质、黄灵等黄色系色素。 目前的辣椒色素产品主要是辣椒红色素,它属于类胡萝卜素中的复烯酮类,为辣椒红素、辣椒玉红素和β-胡萝卜素的混合物,它安全无毒,能够被人体消化吸收,并在人体内转化为维生素A。辣椒红色素外观为深红色粘性油状液体,可任意溶于植物油、丙酮、己醚、三氯甲烷、正己烷,易溶于乙醇,稍难溶于丙三醇,不溶于水,对酸对碱稳定(在偏酸性环境中稳定性更好),在加热条件下不易被破坏,并且具有较强的着色力和良好的分散性,但耐光性、耐氧化性较差,波长210~440nm特别是285nm紫外光可使其褪色,添加L-抗坏血酸可提高其光稳定性,添加类黄酮和多元酚等物质可作为抗氧化剂。辣椒红色泽鲜艳,色价高,其显色强度为其它色素的10倍。 基于辣椒色素的上述特点,国内外学者对其进行了大量的研究,现已形成了几种较为成熟的提取、分离方法。笔者对辣椒色素提取精制技术等方面的研究成果作简单介绍,同时展望未来辣椒色素的研究动向。 1 几种典型的辣椒色素提取精制方法 1.1 有机溶剂萃取法 根据辣椒色素的理化性质,工业上多采取以下方法进行提取:将茄科植物辣椒的成熟干燥果实之果皮粉碎后,用乙醇、丙酮、异丙醇或正己烷等抽提。考虑到天然红辣椒中含有辣椒红、辣椒素、辣椒油脂等成分,其中辣椒素即辣椒碱有辣味,高温下产生刺激性蒸气,因此在辣椒色素的精制过程中必须将其去除。从结构上看辣椒素含有酰胺键,分子中含有一个羟基,是一个极性化合物,其晶体呈现为单斜棱柱体或矩形,熔点61℃,溶于稀乙醇、己醚、丙酮、乙酸乙酯等溶剂及碱性水溶液中。考虑到辣椒红混合物和辣椒素在不同溶剂中溶解度不同,可以利用两者的溶解度差异进行脱辣处理。贺文智等[5]基于此原理采用正己烷萃取法,利用辣椒红色素易于溶于正己烷而辣椒素较难溶于正己烷的性质将两者进行分离,操作步骤如下:称取经去蒂、去籽、粉碎处理后的红辣椒粉末,以丙酮为萃取剂进行常压萃取操作,提取液在温度为90℃、真空度为0.09MPa的条件下进行减压蒸馏浓缩,同时回收丙酮。用丙酮提取辣椒红的过程实质上是液固之间通过相际接触表面进行的传质过程,传质速率的快慢决定着传质设备的尺寸及操作时间。该方法为了提高传质速率,采用索氏提取器对粉末状的干红辣椒进行提取。称取一定量的经浓缩的辣椒红粗产品用一定量的正己烷进行萃取脱辣,试验结果见表1。 色价定义为单位质量原料的提取物的吸光度。 该方法操作简单,色素回收率较大,产品得率高,但产品色价较小。由于色价值与辣度呈负相关性,说明该方法脱辣不够彻底,对于以辣椒红为主要产品且对辣椒素含量要求不是十分苛刻的情况,可以采用此方法。张宗恩等以丙酮为溶剂提取制备辣椒油树脂,油树脂得率高、色价大、辣素含量低,便于分离。采用pH值大于10.37的丙酮(50%)溶液进行5次以上脱辣萃取可得到口尝无辣味的红色素。该方法工艺简单、操作方便,所得色素的各项质量指标均符合FAO/WHO标准。 1.2 柱层析法据报道,辣椒中的辣椒素即使稀释1:100000仍能感觉到辣味,这在很大程度上限制了辣椒色素的应用。因此,去掉辣味成分就成为提取分离辣椒红色素工艺的关键步骤。用硅胶柱层析分离辣椒色素属分配层析法,是根据色素和辣素的结构差异,在束缚于硅胶上的固定相和洗脱液中的溶解度不同,因此在固定相和洗脱液之间的分配系数不同而达到分离效果。袁庆云研究了用硅胶柱层析分离辣椒红色素,总结出以下工艺流程: 辣椒→挑选→粉碎→加酶→过滤→浓缩→乙醇石油醚提取→过滤→浓缩→上硅胶柱→洗脱→浓缩→得深红色粘稠液体。 操作要领有: 1)加酶:加酶水解使细胞中与蛋白质、脂肪、糖类等结合的色素游离出来,便于用溶剂提取。 2)提取:以90%乙醇和石油醚(1∶1)的提取液在室温下搅拌过夜提取,经过滤后减压浓缩。3)通过薄层层析寻找洗脱条件,当石油醚和食用级90%乙醇体积比=2∶1时展层效果最好。 4)将提取的浓缩液上硅胶柱,柱直径10cm,高100cm,用洗脱液洗脱,收集红色洗脱部分 5)将收集的洗脱部分减压浓缩。 实验所得红色粘稠液经检验水分含量0.37%,脂肪含量90.68%,色素∶色阶E1%1cm(475nm)=143,不含辣椒素。贺文智、索全伶等[5]也探讨了辣椒红色素的柱层析提取精制方法:用丙酮作萃取剂从红辣椒干粉中提取出辣椒红粗品,粗品经减压蒸馏浓缩处理后进行柱层析脱辣精制操作。该试验鉴于柱层析法的优点,采用尺寸规格较大的玻璃柱进行柱层析分离,选用粒径74~152μm硅胶作填料,石油醚与丙酮的复配混合液(10:1)为展开剂进行柱层析。辣椒红粗品上柱淋洗分离,首先流出的是橙黄色液体(量少),其次是辣椒红色素,最后是较难洗脱的淡黄色且具有较浓辣味的液体。收集红色素产品进行减压蒸馏浓缩,用751分光光度计测定其色价E1%1cm(460nm)=56.5,色素回收率可达平均67.2%。 针对现有文献中大多介绍以红辣椒为原料提取无辣味混合色素的方法但未对混合色素作进一步分离分析的问题,提出了采用柱层析对辣椒色素中的黄色素进行分离。该方法以硅胶为固定相,丙酮、95%乙醇分别作为辣红素和辣黄素的洗脱剂,每次分离的色素量为硅胶质量的4%~2%,分离后的液体经减压蒸馏得浓缩产物。通过此过程,不但可得到辣椒色素中的主要副产品---黄色素,而且相应地提高了主要成分的纯度,得到纯度较高的红色素。 采用柱层析分离技术,选用吸附剂X和混合洗脱液用于中试,将辣椒色素中红、橙、黄进一步分离,可以使低质量辣椒红色素的色价和色调得到较大的提高。吴明光等采用柱层析分离技术,从辣椒果皮中分离出了游离型结晶辣椒红色素单体,其含量大于95%,这是我国辣椒红色素在剂型上的突破。 1.3 超临界CO2流体萃取技术 由于辣椒红素的油状特性使得采用有机溶剂萃取分离得到的辣椒色素产品中有较高的溶剂残留,采取一般的洗脱剂方法产品很难达到联合国粮农组织和世界卫生组织(FAO/WHO,1984)规定的最新标准,极大地影响了辣椒色素的实用和出口创汇。超临界流体萃取是一种新型的化工分离技术。该技术的关键是了解超临界流体的溶解能力及随诸多因素影响的变化规律。超临界CO2流体萃取(SCFE-CO2)就是使用高于临界温度、临界压力的CO2流体作为溶媒的萃取过程。处于临界点附近的流体不仅对物质具有极高的溶解能力,而且物质的溶解度会随体系的压力或温度的变化而变化,从而通过调节体系的压力或温度就可以方便地进行选择性地萃取分离不同物质。超临界分离技术工艺简单,能耗低,萃取溶剂无毒、易回收,所得产品具有极高的纯度,残留溶剂符合FAO/WHO要求。赵亚平等采用自行设计的超临界CO2流体萃取设备进行辣椒色素提取。该设备主要由供气系统、超临界CO2流体发生系统、萃取分离系统、计量系统4部分组成,所有部件都国产化。实验表明,最佳萃取条件为粒度<1.2mm,萃取压力15MPa,萃取温度50℃,流量6m3/h。在萃取过程中,根据UV3000紫外可见分光光度计测定200~600nm的吸光度曲线判断辣椒色素与辣椒素的分离效果。用色素的丙酮溶液在449nm处测定吸光度,所得值即为色素的色价。从表2可以看出,用该方法萃取的辣椒色素各项质量指标均超过国家标准。 采用瑞士NOVA公司制造的超临界萃取装置对辣椒色素进行分离、提纯。使产品符合FAO/WHO残留溶剂标准要求(己烷含量≤25mg/kg)的最佳工艺参数是:萃取压力18MPa,萃取温度25℃,萃取剂流量2.0L/min,萃取时间3h。在最佳工艺条件下产品色价可达到342。韩玉谦等采用超临界CO2流体萃取技术对色价100~180,溶剂残留30×10-6~150×10-6的辣椒红色素进行精制,实验结果表明:当萃取压力控制在20MPa以下时,辣椒红色素的色价和色调几乎不受损失,有机溶剂的残留可以降低到2.7×10-6左右,但辣椒色素中的红色系色素和黄色系色素未达到完全分离。研究发现,在超临界CO2流体萃取辣椒色素的过程中使用助溶剂如1%的乙醇或丙酮或升高提取压力能提高辣椒色素得率。在较低压力下分离得到的辣椒色素几乎都是β-胡萝卜素,而在较高压力下得到较大比例的红色类胡萝卜素如辣椒红色素、辣椒玉红素、玉米黄质、β-隐黄质等和少量的β-胡萝卜素。在两步分段提取过程中,第一阶段采用分离红辣椒油和β-胡萝卜素的技术保证了第二阶段辣椒色素提取的富集,并使辣椒红、黄色素比率达到1.8。在自行开发的多功能超临界CO2流体萃取分馏装置上对辣椒色素脱辣精制技术进行了研究,结果表明:在小于10.0MPa压力下可萃取出黄色和辣味成分,保留红色素;当压力大于12.0MPa时可将红色组分萃取完全。尽管超临界流体萃取天然色素具有很多的优点,但由于超临界设备一次性投资较大,目前我国在这一领域还未得到广泛的应用。 1.4 其它 采用两步法萃取分离红辣椒,即先用有机溶剂浸取法从干尖辣椒中萃取出含有红色素、辣椒素和焦油味臭味的辣椒浸膏,然后再用超临界CO2萃取的方法去除焦油味臭味并把红色素和辣椒素分开,从而得到不含有机溶剂的红色素和辣椒素,产量较单纯用超临界萃取方法提高5~7倍,且质量远超过FAO/WHO(1984)标准。姚祖凤、姜洪杰等以6种分离、提取方法进行了54次实验,通过这些实验了解到:辣椒红色素的得率和质量与生产技术和工艺条件有着密切的关系。通过对比分析,可以比较这6种生产技术的先进性和实用性。6种工艺的基本情况见表3。 从表4可知:6种生产技术中,技术Ⅰ生产的辣椒红色素质量最好;技术Ⅱ、Ⅲ生产的辣椒红色素各项指标符合标准,但色价较低;显然,技术Ⅳ、Ⅴ、Ⅵ只能提取色价较低、纯度不高的粗品,尚需进一步精制。 2 讨论 及展望现已形成了多种辣椒色素分离提纯工艺,常规生产方法有有机溶剂萃取法,水蒸气蒸馏法等,但是这些方法都不能彻底地除掉辣味,辣椒素难以回收,色素得率低,而且应用有机溶剂萃取法往往使产品中残留的有机溶剂如丙酮、二氯甲烷、丙酮、正己烷等超标,缩小了产品的适用范围。采用超临界CO2流体萃取技术能够极大地提高辣椒色素产品的质量,产品色价高,有机溶剂残留量小,没有热加工环节而保证天然物质中的原有成分不被破坏,可在室温附近实现SCFE-CO2技术操作,节省能耗,并且能够去掉辣椒产品中的异味,但是该方法操作较复杂,且设备昂贵。硅胶柱层析法操作简单,设备条件要求不高,分离效果较好,去除辣味完全,适合小规模研制和生产。另据资料提供,二元溶剂提取分离辣椒红色素和辣味素技术有很好的提取精制效果。国外有较新研究显示,在较温和的条件下,亚临界丙烷在类胡萝卜素提取方面优于超临界CO2。紫外可见光谱分析、薄层色谱分析、气相色谱法、高效液相色谱法等分析分离技术也被应用于指导选择辣椒红色素的生产工艺参数。 国内目前在辣椒色素产品的深度开发方面差距还很大,技术进步慢,以有机溶剂萃取分离为主要手段,由于溶剂法自身的局限性,产品质量很难提高,降低了产品的经济价值。因此辣椒色素产品的深加工研究有着极高的价值和广阔的前景。避免或减少色素成分在初加工与贮存中的损失至关重要。提高辣椒色素的耐光性、抗氧化性与适用性,希望将脂溶性色素转变为水溶性色素,开发制剂化技术和乳化技术,这些色素制剂与加工技术的配合发展,符合开发领域与市场发展的需要。单一组分的超临界溶剂萃取有一定的局限性,如某些物质在萃取剂中溶解度很低,或选择性不高,导致分离效果不好。应用适当的助溶剂(或夹带剂)可强烈影响超临界流体的溶解能力、选择性及P-V-T性质。因此,在对辣椒色素进行超临界流体萃取的研究过程中开发研制适当的助溶剂可实现更有效的分离。改善脱辣技术的同时引入脱臭技术,将有利于辣椒色素更为广泛的应用。基于现有辣椒色素精制工艺的研究成果,研制与开发投资小、操作简单、产品质量高的辣椒色素提取技术有着及其重要的意义。http://..com/question/477761.html 辣椒红素 辣椒红素是类胡萝卜素的一种,也是目前热门的抗氧化剂。辣椒为茄科辣椒属,能结辣味浆果的一年或多年生草本植物,别名还有番椒、海椒、秦椒、辣茄、甜椒、菜椒、尖椒等。每100g鲜辣椒含水份70-93g、淀粉4.2g,蛋白质1.2-2.0g,维生素C73-342mg;干辣椒主要含维生素A。辣椒的辣味是辣椒素(C16H27no3),辣椒素主要分布在胎座周围隔膜及皮表细胞之中。 辣椒原生长于中南美洲热带地区,1493年传入欧洲,1583年-1598年传入日本,传入中国未见具体时间,中国最早关于辣椒的记载参见明代高濂撰《遵生八笺》(1591年),有:“番椒丛生,白花,果俨似秃笔头,味辣色红,甚可观”的描述。辣椒传入中国有两条路径,一是声明远扬的丝绸之路,从西亚进入甘肃、陕西等地,率远在西北栽培;一是经过马六甲海峡进入南中国,在南方的云南、广西和广东等地栽培。 据称,最早的辣椒生长于智利的丛林,经采集在墨西哥驯化栽培成为蔬菜,然后再传入世界各国。现在,智利还有传统的吃辣椒比赛。但是,植物学家在上个世界的70年代考察,从云南西双版纳的原始森林中发现了野生型的小米椒,引起科植物界广泛关注。这将可能引发一场辣椒的外来和本土产生的争论,如果从大陆板块漂移说讨论,太平洋东海岸与西海岸原来是一个整体的,南中国却也是与中美洲相近呢。 辣椒的医疗作用 一、辣椒能燃烧脂肪 辣椒中含有辣椒素,加速脂肪的新陈代谢,促进能量的消耗,从而防止体内脂肪的聚集。对于不擅嗜辣的人来说,采用辣椒减肥不能太心急,规律地进食,让肠胃刺激感慢慢适应。 最近日本对辣椒又有了新解释。在日本,人们认为辣椒在某种程度上,是女性的"补品",而非"天敌"。 因为他们认为,除了有杀菌作用外,其中更含有一种叫 "capsaicin"的物质,可以促进荷尔蒙分泌,从而加速新陈代谢以达至燃烧体内脂肪的效果,从而起到减肥作用。 而且辣椒成分天然可靠,此外,他们还认为,在某些以辣食为主的地区,当地女性不但少有暗疮问题,皮肤更大多滑溜溜。 二、辣椒能助颜 辣椒中的辣椒碱,能强新活血,扩张面部皮肤血管,改善面部血液循环,使面色红润。前提是适可而止,小心脸上痘痘爆发。 辣椒可促进血液循环 将辣椒素涂在皮肤上,会扩张微血管,促进循环,而使皮肤发红、发热。目前已有厂商利用这些原理,把辣椒素放入袜子里,成为“辣椒袜”,供冬天保暖用。 辣椒可减轻感冒的不适症状千百年来,辛辣的食物常被认为可以发汗祛痰,现在发现好像也是如此。辛辣的食物可以稀释分泌的黏液,并帮助痰被咳出,以免阻碍呼吸道。加州大学教授艾文奇曼甚至说:“许多在药房出售的感冒药、咳嗽药的功效和辣椒完全一样,但我觉得吃辣椒更好,因为它完全没有副作用。” 三、辣椒能止痛 辣椒中的辣椒素可以减少神经细胞的P物质,使疼痛信号的传递变得不灵敏。辣椒也可以用于治疗风湿。 自古以来辣椒就常被用来解除疼痛,而科学家最近才知道,辣椒素可以耗尽神经传导物质,而传导物质可以将疼痛的讯息传到神经系统。透过辣椒素的止痛原理,辣椒膏已经被用来缓解带状疱疹、三叉神经痛等疼痛。 在红色、黄色的辣椒、甜椒中,存在另一种成分是辣椒红素 (capsanthin)。而辣椒红素是类胡萝卜素的一种,也是目前热门的抗氧化剂。生辣椒的维生素C含量比橙或柠檬多,一只鲜红椒提供的维生素A几乎达到营养专家建议的每日需要量的一半。一种含有辣椒素的油膏对减轻带状疱疹的痛苦很有效。 四、辣椒可以防癌 据研究,辣椒中的类胡卜素不但可以有助于视力,而且也具有抗细胞突变的作用。辣椒红素预防癌症从流行病学的研究来看,许多嗜辣的民族,如东南亚、印度等国罹患癌症的几率都比西方国家少。科学家推测,这些辛辣的食物中,还有许多抗氧化的物质,氧化和慢性病、癌症及老化本来就有直接的关联。 最近美国夏威夷大学研究指出,辣椒、胡萝卜等蔬菜中类胡萝卜素能刺激细胞间传达讯息的基因 (因为器官癌变时,细胞间交换讯息的系统会发生故障),这可能在预防癌症上有重要的功用。 预防动脉硬化一根红辣椒中含有1日所需的β-胡萝卜素,而β-胡萝卜素是强抗氧化剂,可以抑制低密度胆固醇(LDL)被氧化成有害的型态。LDL一旦被氧化,就像奶油没放进冰箱一样,会变成坏的物质阻塞动脉。换句话说,就是β-胡萝卜素在动脉硬化的初始阶段,就开始干预。 哪些人不宜多吃辣椒? 如今含辣椒的菜肴越来越深入家庭。但从健康保健的角度讲,并非人人都适合吃辣椒。 患热性病、溃疡病、慢性胃肠病、痔疮、皮炎、结核、慢性支气管炎及高血压等疾病的人,不宜大量食用辣椒。 瘦人不宜多吃辣椒。从中医角度讲,瘦人多属阴虚和热性体质,所谓“瘦人多火”即指虚心。这一类人常常表现为咽干、口苦、眼部充血、头重脚轻、烦躁易怒,如果多吃辣椒不仅会使上述症状加重,而且容易导致出血、过敏和炎症,严重时还会发生疮痈感染等。 甲亢患者不宜食辣椒。甲亢患者常常处在高度兴奋状态,故不宜吃辣椒等强烈刺激性食物。 肾炎患者不宜食用辣椒。研究证明,在人体代谢过程中,其辛辣成分常常要通过肾脏排泄,这对肾脏实质细胞均有不同程度的刺激作用。 这里有辣椒红素性质鉴定http://www.syjskj.com/khdt/khdt/200702/11153.html

如何除去丙酮中的醇和水

第一步
周昌
常用有机试剂的纯化-丙酮沸点56.2℃,折光率1.358 8,相对密度0.789 9。普通丙酮常含有少量的水及甲醇、乙醛等还原性杂质。其纯化方法有:⑴于250mL丙酮中加入2.5g高锰酸钾回流,若高锰酸钾紫色很快消失,再加入少量高锰酸钾继续回流,至紫色不褪为止。然后将丙酮蒸出,用无水碳酸钾或无水硫酸钙干燥,过滤后蒸馏,收集55~56.5℃的馏分。用此法纯化丙酮时,须注意丙酮中含还原性物质不能太多,否则会过多消耗高锰酸钾和丙酮,使处理时间增长。⑵将100mL丙酮装入分液漏斗中,先加入4mL10%硝酸银溶液,再加入3.6mL1mol/L氢氧化钠溶液,振摇10min,分出丙酮层,再加入无水硫酸钾或无水硫酸钙进行干燥。最后蒸馏收集55~56.5℃馏分。此法比方法⑴要快,但硝酸银较贵,只宜做小量纯化用。常用有机溶剂的纯化-四氢呋喃沸点67℃(64.5℃),折光率1.405 0,相对密度0.889 2。 四氢呋喃与水能混溶,并常含有少量水分及过氧化物。如要制得无水四氢呋喃,可用氢化铝锂在隔绝潮气下回流(通常1000mL约需2~4g氢化铝锂)除去其中的水和过氧化物,然后蒸馏,收集66℃的馏分蒸馏时不要蒸干,将剩余少量残液即倒出)。精制后的液体加入钠丝并应在氮气氛中保存。处理四氢呋喃时,应先用小量进行试验,在确定其中只有少量水和过氧化物,作用不致过于激烈时,方可进行纯化。四氢呋喃中的过氧化物可用酸化的碘化钾溶液来检验。如过氧化物较多,应另行处理为宜。 常用有机溶剂的纯化-二氧六环! 沸点101.5℃,熔点12℃,折光率1.442 4,相对密度1.033 6。二氧六环能与水任意混合,常含有少量二乙醇缩醛与水,久贮的二氧六环可能含有过氧化物(鉴定和除去参阅乙醚)。二氧六环的纯化方法,在500mL二氧六环中加入8mL浓盐酸和50mL水的溶液,回流6~10h,在回流过程中,慢慢通入氮气以除去生成的乙醛。冷却后,加入固体氢氧化钾,直到不能再溶解为止,分去水层,再用固体氢氧化钾干燥24h。然后过滤,在金属钠存在下加热回流8~12h,最后在金属钠存在下蒸馏,压入饥丝密封保存。精制过的1,4-二氧环己烷应当避免与空气接触。常用有机溶剂的纯化-吡啶沸点115.5℃,折光率1.509 5,相对密度0.981 9。分析纯的吡啶含有少量水分,可供一般实验用。如要制得无水吡啶,可将吡啶与粒氢氧化钾(钠)一同回流,然后隔绝潮气蒸出备用。干燥的吡啶吸水性很强,保存时应将容器口用石蜡封好。常用有机溶剂的纯化-石油醚石油醚为轻质石油产品,是低相对分子质量烷烃类的混合物。其沸程为30~150℃,收集的温度区间一般为30℃左右。有30~60℃,60~90℃,90~120℃等沸程规格的石油醚。其中含有少量不饱和烃,沸点与烷烃相近,用蒸馏法无法分离。.石油醚的精制通常将石油醚用其体积的浓硫酸洗涤2~3次,再用10%硫酸加入高锰酸钾配成的饱和溶液洗涤,直至水层中的紫色不再消失为止。然后再用水洗,经无水氯化钙干燥后蒸馏。若需绝对干燥的石油醚,可加入钠丝(与纯化无水乙醚相同)。常用有机溶剂的纯化-甲醇沸点64.96℃,折光率1.328 8,相对密度0.791 4。普通未精制的甲醇含有0.02%丙酮和0.1%水。而工业甲醇中这些杂质的含量达0.5%~1%为了制得纯度达99.9%以上的甲醇,可将甲醇用分馏柱分馏。收集64℃的馏分,再用镁去水(与制备无水乙醇相同)。甲醇有毒,处理时应防止吸入其蒸气常用有机溶剂的纯化-乙酸乙酯沸点77.06℃,折光率1.372 3,相对密度0.900 3乙酸乙酯一般含量为95%~98%, 含有少量水、乙醇和乙酸。可用下法纯化:于1000mL乙酸乙酯中加入100mL乙酸酐,10滴浓硫酸,加热回流4h,除去乙醇和水等杂质,然后进行蒸馏。馏液用20~30g无水碳酸钾振荡,再蒸馏。产物沸点为77℃,纯度可达以上99%。常用有机溶剂的纯化-乙醚沸点34.51℃,折光率1.352 6,相对密度0.713 78。普通乙醚常含有2%乙醇和0.5%水。久藏的乙醚常含有少量过氧化物 [过氧化物的检验和除去:在干净和试管中放入2~3滴浓硫酸,1mL2%碘化钾溶液(若碘化钾溶液已被空气氧化,可用稀亚硫酸钠溶液滴到黄色消失)和1~2滴淀粉溶液,混合均匀后加入乙醚,出现蓝色即表示有过氧化物存在。除去过氧化物可用新配制的硫酸亚铁稀溶液(配制方法是FeSO4?H2O60g,100mL水和6mL浓硫酸)。将100mL乙醚和10mL新配制的硫酸亚铁溶液放在分液漏斗中洗数次,至无过氧化物为止。l醇和水的检验和除去:乙醚中放入少许高锰酸钾粉末和一粒氢氧化钠。放置后,氢氧化钠表面附有棕色树脂,即证明有醇存在。水的存在用无水硫酸铜检验。先用无水氯化钙除去大部分水,再经金属钠干燥。其方法是:将100mL乙醚放在干燥锥形瓶中,加入20~25g无水氯化钙,瓶口用软木塞塞紧,放置一天以上,并间断摇动,然后蒸馏,收集33~37℃的馏分。用压钠机将1g金属钠直接压成钠丝放于盛乙醚的瓶中,用带有氯化钙干燥管的软木塞塞住。或在木塞中插一末端拉成毛细管的玻璃管,这样,既可防止潮气浸入,又可使产生的气体逸出。放置至无气泡发生即可使用;放置后,若钠丝表面已变黄变粗时,须再蒸一次,然后再压入钠丝。常用有机溶剂的纯化-乙醇沸点78.5℃,折光率1.361 6,相对密度0.789 3。制备无水乙醇的方法很多,根据对无水乙醇质量的要求不同而选择不同的方法。 [若要求98%~99%的乙醇,可采用下列方法:⑴利用苯、水和乙醇形成低共沸混合物的性质,将苯加入乙醇中,进行分馏,在64.9℃时蒸出苯、水、乙醇的三元恒沸混合物,多余的苯在68.3与乙醇形成二元恒沸混合物被蒸出,最后蒸出乙醇。工业多采用此法。)⑵用生石灰脱水。于100mL95%乙醇中加入新鲜的块状生石灰20g,回流3~5h,然后进行蒸馏。若要99%以上的乙醇,可采用下列方法:⑴在100mL99%乙醇中,加入7g金属钠,待反应完毕,再加入2**g邻苯二甲酸二乙酯或25g草酸二乙酯,回流2~3h,然后进行蒸馏。金属钠虽能与乙醇中的水作用,产生氢手和氢氧化钠,但所生成的氢氧化钠又与乙醇发生平衡反应,因此单独使用金属钠不能完全除去乙醇中的水,须加入过量的高沸点酯,如邻苯二甲酸二乙酯与生成的氢氧化钠作用,抑制上述反应,从而达到进一步脱水的目的。⑵在60mL99%乙醇中,加入5g镁和0.5g碘,待镁溶解生成醇镁后,再加入900mL99%乙醇,回流5h后,蒸馏,可得到99.9%乙醇。由于乙醇具有非常强的吸湿性,所以在操作时,动作要迅速,尽量减少转移次数以防止空气中的水分进入,同时所用仪器必须事前干燥好。常用有机溶剂的纯化-DMSO沸点189℃,熔点18.5℃,折光率1.4783,相对密度1.100。二甲基亚砜能与水混合,可用分子筛长期放置加以干燥。然后减压蒸馏,收集76℃/1600Pa(12mmHg)馏分。蒸馏时,温度不可高于90℃,否则会发生歧化反应生成二甲砜和二甲硫醚。也可用氧化钙、氢化钙、氧化钡或无水硫酸钡来干燥,然后减压蒸馏。也可用部分结晶的方法纯化。二甲基亚砜与某些物质混合时可能发生爆炸,例如氢化钠、高碘酸或高氯酸镁等应予注意常用有机溶剂的纯化-DMF 二甲基甲酰胺沸点149~156℃,折光率1.430 5,相对密度0.948 7。无色液体,与多数有机溶剂和水可任意混合,对有机和无机化合物的溶解性能较好。二甲基甲酰胺含有少量水分。常压蒸馏时有些分解,产生二甲胺和一氧化碳。在有酸或碱存在时,分解加快。所以加入固体氢氧化钾(钠)在室温放置数小时后,即有部分分解。因此,最常用硫酸钙、硫酸镁、氧化钡、硅胶或分子筛干燥,然后减压蒸馏,收集76℃/4800Pa(36mmHg)的馏分。其中如含水较多时,可加入其1/10体积的苯,在常压及80℃以下蒸去水和苯,然后再用无水硫酸镁或氧化钡干燥,最后进行减压蒸馏。纯化后的N,N-二甲基甲酰胺要避光贮存。二甲基甲酰胺中如有游离胺存在,可用2,4二硝基氟苯产生颜色来检查常用有机溶剂的纯化-二氯甲烷 沸点40℃,折光率1.424 2,相对密度1.326 6。 使用二氯甲烷比氯仿安全,因此常常用它来代替氯仿作为比水重的萃取剂。普通的二氯甲烷一般都能直接做萃取剂用。如需纯化,可用5%碳酸钠溶液洗涤,再用水洗涤,然后用无水氯化钙干燥,蒸馏收集40~41℃的馏分,保存在棕色瓶中。沸点101.5℃,熔点12℃,折光率1.442 4,相对密度1.033 6。二氧六环能与水任意混合,常含有少量二乙醇缩醛与水,久贮的二氧六环可能含有过氧化物(鉴定和除去参阅乙醚)。二氧六环的纯化方法,在500mL二氧六环中加入8mL浓盐酸和50mL水的溶液,回流6~10h,在回流过程中,慢慢通入氮气以除去生成的乙醛。冷却后,加入固体氢氧化钾,直到不能再溶解为止,分去水层,再用固体氢氧化钾干燥24h。然后过滤,在金属钠存在下加热回流8~12h,最后在金属钠存在下蒸馏压入饥丝密封保存。精制过的1,4-二氧环己烷应当避免与空气接触。常用有机溶剂的纯化-二硫化碳沸点46.25℃,折光率1.631 9,相对密度1.2632。二硫化碳为有毒化合物,能使血液神经组织中毒。具有高度的挥发性和易燃性,因此,使用时应避免与其蒸气接触对二硫化碳纯度要求不高的实验,在二硫化碳中加入少量无水氯化钙干燥几小时,在水浴55℃~65℃下加仍霍馏、收集。如需要制备较纯的二硫化碳,在试剂级的二硫化碳中加入0.5%高锰酸钾水溶液洗涤三次。除去硫化氢再用汞不断振荡以除去硫。最后用2.5%硫酸汞溶液洗涤,除去所有的硫化氢(洗至没有恶臭为止),再经氯化钙干燥,蒸馏收集常用有机溶剂的纯化-氯仿[沸点61.7℃,折光率1.445 9,相对密度1.483 2。2 O( O7 g0 b/ S氯仿在曰光下易氧化成氯气、氯化氢和光气(剧毒),故氯仿应贮于棕色瓶中。市场上供应的氯仿多用1%酒精做稳定剂,以消除产生的光气。氯仿中乙醇的检验可用碘仿反应;游离氯化氢的检验可用硝酸银的醇溶液。除去乙醇可将氯仿用其二分之一体积的水振摇数次分离下层的氯仿,用氯化钙干燥24h,然后蒸馏。另一种纯化方法:将氯仿与少量浓硫酸一起振动两三次。每200mL氯仿用10mL浓硫酸,分去酸层以后的氯仿用水洗涤,干燥,然后蒸馏。除去乙醇后的无水氯仿应保存在棕色瓶中并避光存放,以免光化作用产生光气。常用有机溶剂的纯化-苯) 沸点80.1℃,折光率1.501 1,相对密度0.87865。普通苯常含有少量水和噻吩,噻吩和沸点84℃,与苯接近,不能用蒸馏的方法除去。噻吩的检验:取1mL苯加入2mL溶有2mg吲哚醌的浓硫酸,振荡片刻,若酸层号蓝绿色,即表示有噻吩存在。噻吩和水的除去:将苯装入分液漏斗中,加入相当于苯体积七分之一的浓硫酸,振摇使噻吩磺化,弃去酸液,再加入新的浓硫酸,重复操作几次,直到酸层呈现无色或淡黄色并检验无噻吩为止。将上述无噻吩的苯依次用10%碳酸钠溶液和水洗至中性,再用氯化钙干燥,进行蒸馏,收集80℃的馏分,最后用金属钠脱去微量的水得无水苯。