欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

人工智能领域有哪些重要的学术会议和顶级实验室

大日子
陈星
麻省理工计算机科学和人工智能实验室斯坦福人工智能实验室IBM研究院版微软研究院谷歌权最近两年,随着人工智能的不断发展,高校和企业建立的人工智能实验室的数量持续增多,比如丰田汽车公司分别与斯坦福大学、麻省理工学院等合作建立实验室,用于研究人工智能、机器人、自动驾驶车辆技术的发展;同出于日本的丰田也已经在欧美和日本拥有四家技术研发中心,并计划在东京设计第五家实验室,致力于计算机视觉、人工智能、物联网、语音识别等方面的研究;百度研究院也设置了硅谷人工智能实验室、北京深度学习实验室(原深度学习研究院)和北京大数据实验室

在北京做人工智能开发待遇一般能达到多少?

适莽苍者
麻丘
近年来,人工智能技术在各行各业中的应用越来越普及,相关专业技术人才也专是供不应求,各大公司属或是创业公司不惜重金招募AI人才。近期一项统计显示,人工智能相关职位平均年薪达到30万元-60万元,从业时间长的甚至能达到年薪百万。对于AI相关的技术岗位,30万-60万年薪基本上是比较主流的收入水平,相较于其他技术岗位,基本上是8年以上工作经验的架构师的收入水平。在231份样本数据中,30万以下年薪24份,30-60万年薪88份,60-100万25份,100万+31份,面议类的63份,局限在于很多年薪数百万的岗位不会被猎头发布出来。不同类型的企业也拿出了各自的高招来吸引优秀的AI人才,比较有意思的比如创新工场旗下的人工智能研究院拿出“李开复(微博)亲任院长”这样的职位诱惑参与人才抢夺战。其他常见的招揽手段,除了高薪,依次为:补助(63份岗位),弹性工作(47份岗位),双薪(41份岗位),期权(36份岗位),聚餐(34份岗位),旅游(24份岗位)。

北京市的人工智能产业园在哪里?可以简单介绍下吗

非吾事也
愿见
北京市的人工智能产业园坐落于中关村科学城,也就是大家熟知的中关村壹号内。中关村壹号以“硬科技容”(人工智能)为产业主导方向,聚焦人工智能、金融科技等前沿产业,主要以硬科技(人工智能)的领军企业、隐形冠军企业、独角兽企业和种子企业为招商对象,宗旨为:“让中国最具创新力的企业在一起”。因此说中关村壹号是北京的人工智能产业园毫不夸张。

清华大学和中科院自动化研究所的人工智能哪个难考

风起北方
嬴政
清华大学难考!一个令人无奈的事实是:一个专业或方向清华大学(把北大也捎上吧)也有,别的科研院所也有,不管这个排名如何,就是有可能清华(北大)这个方向的排名比别人低,但招分会是清华(北大)高!自动化研究所390分能上吗?本回答被提问者和网友采纳

中国有哪些智能机器人或人工智能的研究所?

时有终始
料器邢
清华大学,哈工大,西安交大,上交大,东北大学,中科院沈阳所,北理工,北航。

北京哪几个大学有在职博士“人工智能”专业

公而不当
出嫁女
国内根本就没有人工智能这么一个学科或者专业,北京也没有哪个大学有什么人工智能专业。你只能选择计算机科学与技术或者控制科学与工程的博士,然后选择研究方向包括人工智能领域的博士生导师。

北京医芯人工智能科技有限公司怎么样?

班纳路
金童子
北京医芯人工智能科技有限公司是2018-11-09在北京市海淀区注册成立的有限责专任公司(自然人独资),注属册地址位于北京市海淀区上地信息路26号10层1015-104室。北京医芯人工智能科技有限公司的统一社会信用代码/注册号是91110108MA01FHL50J,企业法人丁航冰,目前企业处于开业状态。北京医芯人工智能科技有限公司的经营范围是:技术咨询、技术开发、技术转让、技术推广、技术服务;软件开发;产品设计。(企业依法自主选择经营项目,开展经营活动;依法须经批准的项目,经相关部门批准后依批准的内容开展经营活动;不得从事本市产业政策禁止和限制类项目的经营活动。)。本省范围内,当前企业的注册资本属于一般。通过百度企业信用查看北京医芯人工智能科技有限公司信息和资讯。

人工智能领域哪些高校实力强?

豳风
偷偷摸摸
要根据自己兴趣和能力慎重选择专业,院校和导师。首先,是专业。相关专回业:计算机类答+数学类+自动化类+软件类+电子类+信息科学类(信息管理和图书情报),学院与之对应其次,对应专业的院校。考量指标:院校级别和排名+正教授人数及学者头衔数量+基金类目、级别及数量+博士后流动站有无和数量+国家重点实验室有无和数量+科研成果产出质量数量。

人工智能的技术研究

刀斧手
物也
用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 如今没有统一的原理或范式指导人工智能研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的?智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?智能是否可以使用高级符号表达,如词和想法?还是需要“子符号”的处理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提议人工智能应归类为SYNTHETIC INTELLIGENCE,[29]这个概念后来被某些非GOFAI研究者采纳。大脑模拟主条目:控制论和计算神经科学20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控制论之间的联系。其中还造出一些使用电子网络构造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 这些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协会会议.直到1960, 大部分人已经放弃这个方法,尽管在80年代再次提出这些原理。符号处理主条目:GOFAI当20世纪50年代,数字计算机研制成功,研究者开始探索人类智能是否能简化成符号处理。研究主要集中在卡内基梅隆大学, 斯坦福大学和麻省理工学院,而各自有独立的研究风格。JOHN HAUGELAND称这些方法为GOFAI(出色的老式人工智能)。[33] 60年代,符号方法在小型证明程序上模拟高级思考有很大的成就。基于控制论或神经网络的方法则置于次要。[34] 60~70年代的研究者确信符号方法最终可以成功创造强人工智能的机器,同时这也是他们的目标。认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们为人工智能的基本原理打下基础,如认知科学, 运筹学和经营科学。他们的研究团队使用心理学实验的结果开发模拟人类解决问题方法的程序。这方法一直在卡内基梅隆大学沿袭下来,并在80年代于SOAR发展到高峰。基于逻辑不像艾伦·纽厄尔和赫伯特·西蒙,JOHN MCCARTHY认为机器不需要模拟人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表示, 智能规划和机器学习. 致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他地方开发编程语言PROLOG和逻辑编程科学.“反逻辑”斯坦福大学的研究者 (如马文·闵斯基和西摩尔·派普特)发现要解决计算机视觉和自然语言处理的困难问题,需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行为。ROGER SCHANK 描述他们的“反逻辑”方法为 SCRUFFY .常识知识库 (如DOUG LENAT的CYC)就是SCRUFFYAI的例子,因为他们必须人工一次编写一个复杂的概念。基于知识大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。这场“知识革命”促成专家系统的开发与计划,这是第一个成功的人工智能软件形式。“知识革命”同时让人们意识到许多简单的人工智能软件可能需要大量的知识。子符号法80年代符号人工智能停滞不前,很多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。很多研究者开始关注子符号方法解决特定的人工智能问题。自下而上, 接口AGENT,嵌入环境(机器人),行为主义,新式AI机器人领域相关的研究者,如RODNEY BROOKS,否定符号人工智能而专注于机器人移动和求生等基本的工程问题。他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能中使用控制理论。这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。计算智能80年代中DAVID RUMELHART 等再次提出神经网络和联结主义. 这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。统计学法90年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是人工智能成功的原因。共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。STUART J. RUSSELL和PETER NORVIG指出这些进步不亚于“革命”和“NEATS的成功”。有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能目标。集成方法智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系统称为混合智能系统 ,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号AI 和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。 机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。 ⒈ MASSACHUSETTS INSTITUTE OF TECHNOLOGY麻省理工学院⒉ STANFORD UNIVERSITY斯坦福大学(CA)⒊ CARNEGIE MELLON UNIVERSITY卡内基美隆大学(PA)⒋ UNIVERSITY OF CALIFORNIA-BERKELEY加州大学伯克利分校⒌ UNIVERSITY OF WASHINGTON华盛顿大学⒍ UNIVERSITY OF TEXAS-AUSTIN德克萨斯大学奥斯汀分校⒎ UNIVERSITY OF PENNSYLVANIA宾夕法尼亚大学⒏ UNIVERSITY OF ILLINOIS-URBANA-CHAMPAIGN 伊利诺伊大学厄本那—香槟分校⒐ UNIVERSITY OF MARYLAND-COLLEGE PARK马里兰大学帕克分校⒑ CORNELL UNIVERSITY 康奈尔大学 (NY)⒒ UNIVERSITY OF MASSACHUSETTS-AMHERST马萨诸塞大学AMHERST校区⒓ GEORGIA INSTITUTE OF TECHNOLOGY佐治亚理工学院UNIVERSITY OF MICHIGAN-ANN ARBOR 密西根大学-安娜堡分校⒕ UNIVERSITY OF SOUTHERN CALIFORNIA南加州大学⒖ COLUMBIA UNIVERSITY哥伦比亚大学(NY)UNIVERSITY OF CALIFORNIA-LOS ANGELES加州大学洛杉矶分校⒘ BROWN UNIVERSITY布朗大学(RI)⒙ YALE UNIVERSITY耶鲁大学(CT)⒚ UNIVERSITY OF CALIFORNIA-SAN DIEGO加利福尼亚大学圣地亚哥分校⒛ UNIVERSITY OF WISCONSIN-MADISON威斯康星大学麦迪逊分校 1、中国科学院自动化研究所2、清华大学3、北京大学4、南京理工大学5、北京科技大学6、中国科学技术大学7、吉林大学8、哈尔滨工业大学9、北京邮电大学10、北京理工大学11、厦门大学人工智能研究所12、西安交通大学智能车研究所13、中南大学智能系统与智能软件研究所14、西安电子科技大学智能所15、华中科技大学图像与人工智能研究所16、重庆邮电大学17、武汉工程大学